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ABSTRACT

This paper addresses for the first time, the problem of multi-
illumination fusion with crack enhancement. Our models are
trained using cycle-consistent losses to combine crack details
from several mutually registered multi-illumination images of
ceramic tiles, into a single representative image. Using real-
world industrial data, we show that the crack locations are
enhanced in the fused images, making them easily noticeable
for remote inspection, and demonstrate the effectiveness of
our method compared to a multi-exposure fusion technique.

Index Terms— Multi-illumination fusion, crack detec-
tion, visual inspection, cycle-consistent loss

1. INTRODUCTION

Inspection and maintenance activities are periodically carried
out for several industrial components to ensure both quality
and safety. With the advancement in technology, there is an
increasing demand for automating the inspection process. In
this direction, there has been a steady progress in the use of
image processing and computer vision based methods for au-
tomatic visual inspection. For example, use of photometric
stereo to identify defects in casted steel [1], convolutional
neural networks for inspection of metallic components in nu-
clear power plants [2], examining flaws in concrete structures
[3], inspection with multiple lights [4, 5], have been used to
automate visual inspection of cracks from the digital images
and videos of the areas to be inspected. Similarly, defect de-
tection in aeronautic components is discussed in [6, 7, 8].

In spite of this progress, an expert’s opinion remains nec-
essary whenever the cost of failure to detect the defects is
high or even catastrophic. Such a visual inspection process
requires the expert to carefully perform large number of as-
sessments based on prior training and experience. Thus, at the
moment, the role of a human expert is irreplaceable in many
industrial inspection scenarios. However, experts may not al-
ways be available in person to perform inspections, especially
in situations like the recent pandemic that restrict movement
of people. So inspection has an increasing trend on being
executed remotely. Further, to perform a more reliable as-
sessment, the experts may rely on several images which may

be acquired from different viewpoints and/or lighting condi-
tions. With many objects to be inspected, the process can
become exhausting, especially when the number of images is
large and defects may be visible in only few of them.

In this paper, we address one such problem involving large
number of images for every object to be inspected. Our pro-
posed method fuses several mutually registered images of ce-
ramic tiles, into a single representative image, highlighting
cracks to help the visual inspection process. The images are
acquired with different illumination conditions using a cus-
tomized illumination setup, to improve the visibility of cracks
for remote inspection. Our fusion method is based on train-
ing image generators with cycle-consistent losses motivated
by [9], that allow transformation from one domain (acquired
images) to another (fused) and back. Cracks are enhanced
by constraining the image generators with loss networks that
produce binary crack representations of the inputs. An ex-
ample of fusion with crack enhancement using the proposed
method is shown in Fig. 1.

Our main contribution is a method to combine and en-
hance crack details into a single representative image from an
image sequence acquired using different illuminations. Al-
though there exist techniques for image fusion, no previous
attempts have been made for simultaneous crack enhance-
ment using multi-illumination image sequence, to the best of
our knowledge.

2. RELATED WORK

The problem we address is that of generating one represen-
tative image by fusing crack details present in several im-
ages acquired with different illuminations. Multi-Exposure
Fusion (MEF) is a similar problem where the objective is
to fuse a sequence of images acquired with different expo-
sure times to get a single well exposed image [10, 11, 12,
13, 14, 15]. Nevertheless, cracks can have better visibility
in a multi-illumination sequence than in a multi-exposure se-
quence. This is because varying illumination directions can
easily create noticeable shadows on cracks, but changing the
exposure may not have the same effect. Like in our problem,
MEF also assumes the input images to be mutually registered.
However, the change across pixels in the different images is



Fig. 1. A sequence of images is acquired with different illuminations since cracks can have better visibility only under certain
illumination directions depending on their location and orientation. Manual inspection of details in several images is exhausting
and one can easily miss seeing a crack that is visible in one or more of those images. Our method generates one representative
image (c) having better visibility of cracks, by fusing and highlighting the crack details present in the image sequence (a).

consistent with MEF, while in our case it is not. Also, due to
exposure bracketing in MEF, the pixels across different im-
ages are well distributed over the exposure range. In our case,
the pixels are well exposed only in few images while being
underexposed in most of them. These differences are mainly
because of varying illumination directions in our problem.

Nevertheless, since the goal of MEF is similar to ours,
we discuss the generic MEF methods [10, 11, 12]. In gen-
eral, for patches (or pixels) xn, in a sequence of N exposure
bracketed images, the fused patch (or pixel) y is obtained as:
y =

∑N
n=1 wnxn, where different MEF algorithms use dif-

ferent methods to calculate the weight wn.
The method in [10] calculates the weight wn based on

contrast, saturation and well-exposedness of each pixel across
the sequence. This method is straightforward and can work
with an arbitrary number of input images. However, the re-
sulting image appears dark with a large input sequence if pix-
els are not well exposed in most of them. This can be im-
proved by using morphological operations for preprocessing
and additional criteria for weight calculation. In our case, we
use such a modified version of exposure fusion to generate an
initial estimate of the fused patches required for training.

The first deep neural network architecture used to model
the transformation from xn to y for MEF was proposed in
[11]. It optimizes an encoder-decoder model to match the
structural similarity of the fused image patches with that of
the input image patches, using the structural similarity in-
dex measure (SSIM) inspired from [16]. Here, fusion is per-
formed by adding the features extracted from two exposure
bracketed images using a shared encoder. The fused fea-
tures are then decoded by the decoder. This method is in-
teresting and can work with an arbitrary number of images.
However, the shared encoder generates high dimensional fea-
tures for each input, which becomes computationally expen-
sive for backpropagation with large number of inputs. More-
over, SSIM does not address brightness enhancement when
most of pixels in the sequence are underexposed.

The method proposed in [12] uses an iterative algorithm
to optimize the SSIM between the fused and the input images.

For such an optimization, the number of parameters is equal
to the number of pixels in the fused image. It, therefore, be-
comes computationally expensive with the increase in image
size, to a point where it is impossible to use for large images.

All these methods perform fusion, which is also the goal
of our work. In addition, we also perform a task specific en-
hancement in the same fusion framework, which has not been
addressed previously to the best of our knowledge. Our pro-
posed method uses fully convolutional architectures and patch
based training similar to [11], but with a dedicated encoder
that can work simultaneously with all patches in the sequence,
which is computationally less expensive in comparison to a
shared encoder. We address the issue of brightness enhance-
ment when most of pixels in the sequence are underexposed,
by using examples of initially fused patches that are well ex-
posed. Additionally, we use cycle-consistent losses for both
visual as well as corresponding crack representations, which
helps in highlighting the crack details in the fused image.

3. PROPOSED APPROACH

The pipeline of our proposed approach is shown in Fig. 2.
First, we acquire mutually registered tile images in several
different illumination conditions using a customized setup.
We then obtain the binary crack annotations with the help of
experts who carefully inspect the tile as well as the acquired
image sequence. From the acquired sequence, we generate an
initial estimate of the fused image with a modified version of
exposure fusion [10] using morphological preprocessing and
additional weight-criteria to improve the contrast and bright-
ness. Co-located patches extracted from the image sequence,
initial fusion estimate and binary crack annotations are then
used for training our models.

3.1. Models

Considering the sequence of N images as domain A, fused
image as domain B and crack annotations as domain C, we
train 4 models, viz., GA2B (N to 1 channel image generator),



Fig. 2. Proposed approach pipeline: An acquired sequence of images is annotated by experts to generate ground truth binary
crack annotations. An initial estimate for fusion is obtained from the acquired sequence using a modified version of exposure
fusion [10] to improve the contrast and brightness. Co-located patches from these images are then used for training image
generators GA2B , GB2A in a cycle consistent manner along with the crack generators GA2C , GB2C .

GB2A (1 to N channel image generator), GB2C (1 to 1 chan-
nel crack generator) and GA2C (N to 1 channel crack gen-
erator). This framework is inspired from [9], except that we
use crack generators in place of discriminators and train with
paired patches. The architecture of all our models is based on
U-Net [17] having skip connections. The image generators try
to reconstruct the visual information while the crack genera-
tors try to extract the crack details. Using the crack generators
as loss networks for the image generators helps in crack en-
hancement. The cycle-consistent losses further assist the im-
age generators in preserving both visual information as well
as crack details. This is done by enforcing crack enhancement
not only for transformation across the two domains A and B,
but also across cyclic transformation to the same domains.

3.2. Losses

For training the crack generators GA2C and GB2C , we use
the balanced binary crossentropy (BBCE) loss, which has
been effective for generating binary edge-like representations
[18]. Here, the balancing is done using the proportion of
pixels annotated as cracks in the ground truth patch. Consid-
ering patches x ∈ A, y ∈ B and z ∈ C, the losses for training
GA2C and GB2C are given by:

lossA2C(x, z) = BBCE(x, z), (1)

lossB2C(y, z) = BBCE(y, z). (2)

For the image generators, we use a combination of losses,
viz., mean absolute error (MAE) or L1 loss and BBCE in a
cycle-consistent fashion as follows:

lossA2B(x, y, z) =BBCE(GB2C(GA2B(x)), z)+

BBCE(GA2C(GB2A(GA2B(x))), z)+

BBCE(GB2C(GA2B(GB2A(y))), z)+

MAE(GB2A(GA2B(x)), x)+

MAE(GA2B(GB2A(y)), y),

(3)

lossB2A(x, y, z) =BBCE(GA2C(GB2A(y)), z)+

BBCE(GB2C(GA2B(GB2A(y))), z)+

BBCE(GA2C(GB2A(GA2B(x))), z)+

MAE(GA2B(GB2A(y)), y)+

MAE(GB2A(GA2B(x)), x).

(4)

3.3. Training

For each batch of patches x ∈ A, y ∈ B and z ∈ C, training
is performed in the following order:

1. Train GB2A : arg min
GB2A

lossB2A(x, y, z).

2. Train GA2C : arg min
GA2C

lossA2C(x, z).

3. Train GA2B : arg min
GA2B

lossA2B(x, y, z).

4. Train GB2C : arg min
GB2C

lossB2C(y, z).

While the crack generators GA2C and GB2C can be
trained independently, training in the above order helps the
image generators GA2B and GB2A gradually adapt to crack
enhancement. This provides more stability to the models.

4. RESULTS

Our experiments are conducted on a real-world industrial
data of 88 ceramic tiles, which consists of image sequences
acquired using our customized multi-illumination setup [5].
Each sequence has N = 65 different illumination images of
size 1944× 2592. Patches of size 128× 128 from 79 tiles are
used for training, while 9 tiles are used for testing. Models
are trained from scratch for 2 epochs on a single NVIDIA
RTX-2080 GPU, with batches size of 8. Adam optimizer is
used with learning rates 0.0001 and 0.00001 for training the
image generators and crack generators, respectively.



Fig. 3. Results: (a) Fusion with a MEF method [10], (b) initial
estimate, (c) fusion with crack enhancement with our method
(GA2B) and (d) crack annotations provided by experts. No-
tice the high contrast in (c) for regions corresponding to the
crack annotations in (d). (Zoom-in for better visualization)

Fusion results for two test tiles are shown in Fig. 3. The
effect of MEF techniques for multi-illumination images is
shown using exposure fusion [10] in Fig. 3(a). Our initial es-
timate and output of GA2B are shown in Fig. 3(b)-(c), while
the ground truth binary crack annotations provided by experts
are shown in Fig. 3(d). We evaluate the performance using
a measure that captures saliency in terms of edge strength.
For an image I with salient regions Ω ∈ I having stronger
edges, the edge strength in Ω should be higher than the global
edge strength to make Ω easily noticeable. Using Laplacian
of Gaussian (LoG), the edge strength ES is calculated as:

ES =
mean(|Lp|)
mean(|Lq|)

, p ∈ Ω, q ∈ I, L = LoG(I), (5)

where Lp is value of L at pixel p ∈ Ω and Lq is value of L

Table 1. Performance comparison for test images with edge
strength measure defined in Eq. (5) (The higher the better).

Image# MEF [10] Initial estimate Proposed (GA2B)
1 1.2369 1.2354 2.6695
2 1.0719 1.1380 3.1600
3 1.0360 1.1272 1.9077
4 1.0825 1.1279 1.7663
5 1.0844 1.1723 2.4617
6 1.1637 1.0021 2.3807
7 0.9425 0.9081 1.9220
8 1.0956 0.9017 2.4140
9 1.0581 1.2385 2.6135

at pixel q ∈ I . Table 1 presents the edge strengths for test
images considering the crack annotations (white regions) in
Fig. 3(d) as Ω.

The MEF method [10] generates darker results (Fig. 3(a))
with little crack information. This is because pixels are under-
exposed in most of the images of the input sequence, an issue
which is not addressed by the MEF methods. Initial estimates
in Fig. 3(b) have improved contrast and brightness. How-
ever, the presence of dust particles on tile’s surface (e.g., right
side of the tile in first column) reduces visibility of the cracks.
Our results (Fig. 3(c)) have distinct visibility of cracks even
in the presence of dust particles. Moreover, tile details are
better visible in our results and the cracks have higher con-
trast, making them easily noticeable. This is also confirmed
by the comparison presented in Table 1 that indicates better
performance of our method for all the test images.

5. CONCLUSIONS

In this paper we have proposed a method to combine and en-
hance crack details into a single representative image from
several images acquired using different illuminations. The
generated fused image helps in the visual inspection process,
without which one can easily miss seeing a crack that is vis-
ible in one or more of acquired images. The visual informa-
tion is fused using our image generators trained with cycle-
consistent losses. Use of crack generators as loss networks
for the image generators helps to enhance the crack details.
We address the enhancement of pixels that are underexposed
in most of the images of the acquired sequence, which is not
addressed by MEF. Results show that our proposed method is
better suited than using a MEF approach for fusion of multi-
illumination images.
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Bue, and V. Murino, “Automatic inspection of aeronau-
tic components,” Machine Vision and Applications, vol.
28, no. 5, pp. 591–605, Aug 2017. 1
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