
��			���

���������������������������������������

���������������������
titled

HHIISSTTOOGGRRAAMM BBAASSEEDD EEFFFFIICCIIEENNTT

VVIIDDEEOO SSHHOOTT DDEETTEECCTTIIOONN

AALLGGOORRIITTHHMMSS

Submitted in partial fulfilment towards the award of the degree of

����������������������

����

����������������������
�

BY

���������������	����
�
������������	����
�
������������	����
�
������������	����
�
���������������������

Supervisor

���������������������������
�����������
�����������
�����������
��

 2009-2010�

����������	
�	�
�����	�����������	

��

��������������� �!��"��!#������$����������������� �!��"��!#������$����������������� �!��"��!#������$����������������� �!��"��!#������$������

� ���� ���� ���� �������

ii

���������	
���������	
���������	
���������	
����
����

�� ������ �������� ���� ��� �	��� ���
�� �����
���� �
� ���� ����������	
��� ������ �������� ���� ��� �	��� ���
�� �����
���� �
� ���� ����������	
��� ������ �������� ���� ��� �	��� ���
�� �����
���� �
� ���� ����������	
��� ������ �������� ���� ��� �	��� ���
�� �����
���� �
� ���� ����������	
�

���	��� �
���������	��� �
���������	��� �
���������	��� �
���������� �������������� ��� �� !!�"� #�� $�� �� ��������������� ��� �� !!�"� #�� $�� �� ��������������� ��� �� !!�"� #�� $�� �� ��������������� ��� �� !!�"� #�� $�� �� �����

� � "���#� �%��������� � "���#� �%��������� � "���#� �%��������� � "���#� �%��������&&&&� ���� ���� ���� ��� '�� �(�(�'�� �(�(�'�� �(�(�'�� �(�(� ��(�)���%*��� ��%�#����(�)���%*��� ��%�#����(�)���%*��� ��%�#����(�)���%*��� ��%�#��

��+�#�#��+�#�#��+�#�#��+�#�#,� �,� �,� �,� � �����
�������
�������
�������
�� �	��� #	-�	��� #	-�	��� #	-�	��� #	-����)./"�012)./"�012)./"�012)./"�012� �� �� �� � �
���
���
���
�� �3�'������ �	� ��� "	'�3�����3�'������ �	� ��� "	'�3�����3�'������ �	� ��� "	'�3�����3�'������ �	� ��� "	'�3����

��
����
�� ������'�
�� ��� ������� $��������� #���	
��� �
����3��� 	4�
��
����
�� ������'�
�� ��� ������� $��������� #���	
��� �
����3��� 	4�
��
����
�� ������'�
�� ��� ������� $��������� #���	
��� �
����3��� 	4�
��
����
�� ������'�
�� ��� ������� $��������� #���	
��� �
����3��� 	4�

���
	�	��,��3������
	�	��,��3������
	�	��,��3������
	�	��,��3���5555�����
��3�������
��3�������
��3�������
��3��
�������	���	4�'��	�
��	�����������	3���3��
��
�������	���	4�'��	�
��	�����������	3���3��
��
�������	���	4�'��	�
��	�����������	3���3��
��
�������	���	4�'��	�
��	�����������	3���3��
��

��� ����	�� 	4� +3��� 6..0� �	� +3
�� 6.2.� 3
���� ��� �3���7���	
� 	4���� ����	�� 	4� +3��� 6..0� �	� +3
�� 6.2.� 3
���� ��� �3���7���	
� 	4���� ����	�� 	4� +3��� 6..0� �	� +3
�� 6.2.� 3
���� ��� �3���7���	
� 	4���� ����	�� 	4� +3��� 6..0� �	� +3
�� 6.2.� 3
���� ��� �3���7���	
� 	4� ��(� �(� �(���(� �(� �(���(� �(� �(���(� �(� �(�

8�$ ��8�$ ��8�$ ��8�$ ��(����'�����������
�����
��������	������
	�����
��3�'���������'��(����'�����������
�����
��������	������
	�����
��3�'���������'��(����'�����������
�����
��������	������
	�����
��3�'���������'��(����'�����������
�����
��������	������
	�����
��3�'���������'��

�
��
��	����9
�7������:�
����3���4	���
����3��(�
��
��	����9
�7������:�
����3���4	���
����3��(�
��
��	����9
�7������:�
����3���4	���
����3��(�
��
��	����9
�7������:�
����3���4	���
����3��(����

#����������	3�#����������	3�#����������	3�#����������	3�����	���������
,�
	������	
��
��	4������	;�������	�������	���������
,�
	������	
��
��	4������	;�������	�������	���������
,�
	������	
��
��	4������	;�������	�������	���������
,�
	������	
��
��	4������	;�������	���

�7�����
��	�����	���	�
�	�����4�	'��
��	�����	3���(���3
������
������'���7�����
��	�����	���	�
�	�����4�	'��
��	�����	3���(���3
������
������'���7�����
��	�����	���	�
�	�����4�	'��
��	�����	3���(���3
������
������'���7�����
��	�����	���	�
�	�����4�	'��
��	�����	3���(���3
������
������'��

���3�����������	3��������7	�����4�������������4	3
���	�����	(���3�����������	3��������7	�����4�������������4	3
���	�����	(���3�����������	3��������7	�����4�������������4	3
���	�����	(���3�����������	3��������7	�����4�������������4	3
���	�����	(����

����

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<����

====)������������
����;�
�
)������������
����;�
�
)������������
����;�
�
)������������
����;�
�
>>>>����

iii

"� �������!�"� �������!�"� �������!�"� �������!���"����� ��"����� ��"����� ��"����� ����
����
����
����

��������	������4�������������������	
����	����
���������������	������4�������������������	
����	����
���������������	������4�������������������	
����	����
���������������	������4�������������������	
����	����
������������������������ ��������������� ��������������� ��������������� ��

 !!�"� #��$�� �������� � "���#��%�������� !!�"� #��$�� �������� � "���#��%�������� !!�"� #��$�� �������� � "���#��%�������� !!�"� #��$�� �������� � "���#��%��������&&&&,�,�,�,���3�'�����������3�'�����������3�'�����������3�'�����������(���(���(���(�

)���%*��� ��%�#�� ��+�#�#)���%*��� ��%�#�� ��+�#�#)���%*��� ��%�#�� ��+�#�#)���%*��� ��%�#�� ��+�#�#,� �����
�� �	��� #	-�,� �����
�� �	��� #	-�,� �����
�� �	��� #	-�,� �����
�� �	��� #	-�)./"�012)./"�012)./"�012)./"�012���� �
� ���������
� ���������
� ���������
� ��������

43�4���'�
�� 	4� ��� ��?3���'�
�� 4	�� ��� ������43�4���'�
�� 	4� ��� ��?3���'�
�� 4	�� ��� ������43�4���'�
�� 	4� ��� ��?3���'�
�� 4	�� ��� ������43�4���'�
�� 	4� ��� ��?3���'�
�� 4	�� ��� ������ 	4� ��� ������� 	4�	4� ��� ������� 	4�	4� ��� ������� 	4�	4� ��� ������� 	4����� ���!����� ���!����� ���!����� ���!�

� "�#�%��@� "�#�%��@� "�#�%��@� "�#�%��@� �
� "	'�3����
��
����
�,� ��� "	'�3����
��
����
��� �
� "	'�3����
��
����
�,� ��� "	'�3����
��
����
��� �
� "	'�3����
��
����
�,� ��� "	'�3����
��
����
��� �
� "	'�3����
��
����
�,� ��� "	'�3����
��
����
��

������'�
�� 	4� ��� ������� $��������� #���	
��� �
����3��� 	4� ���
	�	��,�������'�
�� 	4� ��� ������� $��������� #���	
��� �
����3��� 	4� ���
	�	��,�������'�
�� 	4� ��� ������� $��������� #���	
��� �
����3��� 	4� ���
	�	��,�������'�
�� 	4� ��� ������� $��������� #���	
��� �
����3��� 	4� ���
	�	��,�

�3������������	���	4����	�
��	�����������	3���3������������	���	4����	�
��	�����������	3���3������������	���	4����	�
��	�����������	3���3������������	���	4����	�
��	�����������	3����������	4�����������	4�����������	4�����������	4�����	3����	���4	�������	3����	���4	�������	3����	���4	�������	3����	���4	�����

����� 6..0����� 6..0����� 6..0����� 6..0AAAA2.(�2.(�2.(�2.(� �	� ��	� ��	� ��	� ��� ����� 	4� 	3�� �
	������,� ��� ����� 	4� 	3�� �
	������,� ��� ����� 	4� 	3�� �
	������,� ��� ����� 	4� 	3�� �
	������,� ��� '������ �'�	����� �
� ����� '������ �'�	����� �
� ����� '������ �'�	����� �
� ����� '������ �'�	����� �
� ���

���	��� ���
	�� ���
� �3�'������ ��������� 4	�� ��� ������ 	4� �
�� ������� 	�����	��� ���
	�� ���
� �3�'������ ��������� 4	�� ��� ������ 	4� �
�� ������� 	�����	��� ���
	�� ���
� �3�'������ ��������� 4	�� ��� ������ 	4� �
�� ������� 	�����	��� ���
	�� ���
� �3�'������ ��������� 4	�� ��� ������ 	4� �
�� ������� 	��

����	'�(����	'�(����	'�(����	'�(����

����

"����4�������"����4�������"����4�������"����4�����������

����

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<���� ����

====��(��(��(�8�7�����(��(��(�8�7�����(��(��(�8�7�����(��(��(�8�7���>>>>����

)�	4���	�,�)�	4���	�,�)�	4���	�,�)�	4���	�,�����

������'�
��	4�"	'�3����
��
����
�,�������'�
��	4�"	'�3����
��
����
�,�������'�
��	4�"	'�3����
��
����
�,�������'�
��	4�"	'�3����
��
����
�,�����

��$�#��$�#��$�#��$�#���	
����
����3���	4����
	�	��,����	
����
����3���	4����
	�	��,����	
����
����3���	4����
	�	��,����	
����
����3���	4����
	�	��,�����

�3�����3�����3�����3����BBBB�C0D..E�C0D..E�C0D..E�C0D..E���� ���� ���� ���� ����

�
����
����
����
�������
����

����

����

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<����

)���
�����,)���
�����,)���
�����,)���
�����,����
�������
�"	'�3����
��
����
�,��������
�"	'�3����
��
����
�,��������
�"	'�3����
��
����
�,��������
�"	'�3����
��
����
�,�����
�$#��,��3�����$#��,��3�����$#��,��3�����$#��,��3��������
����

����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ����,����,����,����,����

���� ���� ���� ���� ���� ���� ������'�
��	4�"	'�3����
��
����
�,������'�
��	4�"	'�3����
��
����
�,������'�
��	4�"	'�3����
��
����
�,������'�
��	4�"	'�3����
��
����
�,����

���� ���� ���� ���� ���� ���� ��$�#���	
����
����3���	4�����$�#���	
����
����3���	4�����$�#���	
����
����3���	4�����$�#���	
����
����3���	4����
	�	��,�
	�	��,�
	�	��,�
	�	��,����

���� ���� ���� ���� ���� ���� �3�����3�����3�����3����BBBB�C0D..E,��
����C0D..E,��
����C0D..E,��
����C0D..E,��
�������

iv

������'�
��	4�"	'�3����
��
����
�������'�
��	4�"	'�3����
��
����
�������'�
��	4�"	'�3����
��
����
�������'�
��	4�"	'�3����
��
����
�����
����

�������$�%%��������#����#�%��#����9� ��!�� "�#�%��@,��������$�%%��������#����#�%��#����9� ��!�� "�#�%��@,��������$�%%��������#����#�%��#����9� ��!�� "�#�%��@,��������$�%%��������#����#�%��#����9� ��!�� "�#�%��@,�
�9����9����9����9�������

����

=6..0=6..0=6..0=6..0AAAA2.>2.>2.>2.>����

����

����	7�����������	7�����������	7�����������	7�����������

����
���� ��� �	� ������ ���� ������� ��� �	� ������ ���� ������� ��� �	� ������ ���� ������� ��� �	� ������ ���� ��� ����������	
� ���	�������������	
� ���	�������������	
� ���	�������������	
� ���	��� �
�������
�������
�������
���������� ���������� ��� ������������ ��� ������������ ��� ������������ ��� ��

 !!�"� #�� $�� �� ����� � !!�"� #�� $�� �� ����� � !!�"� #�� $�� �� ����� � !!�"� #�� $�� �� ����� � � "���#�� "���#�� "���#�� "���#� �%���������%���������%���������%������������ �3�'������3�'������3�'������3�'������ ���� ���� ���� ��� ��������((((����

)���%*�����%�#����+�#�#)���%*�����%�#����+�#�#)���%*�����%�#����+�#�#)���%*�����%�#����+�#�#����=��'����	
�#	-�=��'����	
�#	-�=��'����	
�#	-�=��'����	
�#	-�)./"�012)./"�012)./"�012)./"�012>��������	7���4	��>��������	7���4	��>��������	7���4	��>��������	7���4	��

���������	4�����������	4����������	4�����������	4����������	4�����������	4����������	4�����������	4���������	4����
	�	����
���������	4����
	�	����
���������	4����
	�	����
���������	4����
	�	����
��"	'�3����
��
����
�(��"	'�3����
��
����
�(��"	'�3����
��
����
�(��"	'�3����
��
����
�(�����

�

�	����	4� F�'�
����	����	4� F�'�
����	����	4� F�'�
����	����	4� F�'�
�������
 F�'�
��� F�'�
��� F�'�
��� F�'�
�������

�
�
�
�
�

�

�

�3���7��	��3���7��	��3���7��	��3���7��	�����

�

�

�

�

�

�

�

�

�

����
����

����,�������'�
�����,�������'�
�����,�������'�
�����,�������'�
��	4�"	'�3����
��
����
��	4�"	'�3����
��
����
��	4�"	'�3����
��
����
��	4�"	'�3����
��
����
��
�

�

�

�

����-<<<<<<<<<<<� � � � � � � ���������

)����-<<<<<<<<<<<<<<�

v

Acknowledgements

Apart from my own efforts, the success of this report depends largely on the

encouragement and guidelines of many others. I am especially grateful to my supervisor

Dr. M. A. Zaveri, Professor, Computer Engineering Department, SVNIT, who has

provided guidance, expertise and encouragement.

I express my heartfelt gratefulness to Dr. D. C. Jinwala and Prof. U. P. Rao, for their

stimulating supervision whenever required during my dissertation work. I deeply thank

Prof. Mrs. R. G. Mehta especially for providing the Video Camera to generate a few

experimental videos. I am also thankful to the rest of the staff of Computer Engineering

Department for their cooperation and support.

I acknowledge Mr. Suresh Limkar, Research Scholar, Computer Engineering Department,

SVNIT, for his efforts to provide us the video tutorials on LaTeX. I would like to put

forward my heartfelt acknowledgement to all my classmates, friends and all those who

have directly or indirectly provided their overwhelming support during my project work

and the development of this report.

I thank my parents and relatives in Mumbai for their support and encouragement

throughout my project work. I am grateful to God for his blessings.

Padalkar Milind Gajanan

vi

Abstract

Videos have become a popular means of entertainment over the years. With the increase

in the amount of user generated videos, a large collection is readily available on popular

video sharing websites. Searching for videos with desired content from such a large

collection is becoming a tedious task. The viewers require better control over the video

data and for this reason the video browsing and indexing applications are being

developed. These applications require the videos to be available in an elementary form

called shots in the initial step. Detection of shots requires extraction and comparison of

various features of the video frames. In this report we present two efficient techniques for

shot detection based on histogram feature.

We present the first technique which is used to detect shots joined by dissolve type

transitions, where we initially declare the video frames to be either of dissolve type or

non-dissolve type. Later, we iteratively combine the sequences of non-dissolve frames that

constitute the different shots. To detect shots joined by both the dissolve type transitions

as well as abrupt transitions, we propose a strict clustering based approach in which

initially only the almost identical and consecutive frames are grouped into one cluster.

We then iteratively calculate and compare the histograms of these clusters to merge the

clusters having similar histograms. Finally we discard the clusters having number of

frames less than a minimum number, to obtain the shots.

For experimental purpose we have used the videos downloaded from the popular video

sharing website YouTube. The ground truth being unavailable for these videos, we also

generated and used a few videos by manually adding the shot transitions, in order to have

a firm ground truth. To evaluate the performance, we have used frame precision and

frame recall as metrics. The experimental results prove that our dissolve detection based

technique is able to reduce the number of misdetection to overcome the problem of over-

segmentation, and, our strict clustering based technique runs significantly faster in

comparison with the existing techniques.

vii

Table of Contents

1.0 Introduction ………………………………………………………………

1.1 Motivation …………………………………………………………………….

1.2 Objective ……………………………………………………………………...

1.3 Contribution …………………………………………………………………..

1.4 Outline ………………………………………………………………………...

2.0 Theoretical Background And Literature Survey ………………………

2.1 Theoretical Background ………………………………………………………

2.1.1 Feature Comparison Techniques …………………………………….

2.1.2 Frame Features ………………………………………………………

2.2 Literature Survey ……………………………………………………………..

3.0 Design And Analysis ……………………………………………………..

3.1 Dissolve Detection Based Shot Identification ………………………………..

3.1.1 Feature Extraction …………………………………………………..

3.1.2 Dissolve Detection …………………………………………………..

3.1.3 Histogram Comparison Using SVD …………………………………

3.2 Strict Clustering Based Shot Detection ………………………………………

3.2.1 Feature Extraction …………………………………………………...

3.2.2 Strict Clustering ……………………………………………………..

3.2.3 Histogram Comparison and Cluster Merging ……………………….

3.2.4 Shot Identification …………………………………………………..

4.0 Implementation Methodology …………………………………………...

4.1 Methodology of Evaluation & Metrics ……………………………………….

4.2 Experimental Setup …………………………………………………………...

4.2.1 Dissolve Detection Based Shot Identification ………………………

4.2.2 Strict Clustering Based Shot Detection ……………………………..

4.3 Test Applications ……………………………………………………………..

4.3.1 Proposed Techniques ………………………………………………...

4.3.2 Video Inspection Tool ……………………………………………….

4.3.3 Precision-Recall Calcuator …………………………………………..

1

3

4

5

5

6

6

7

9

11

16

16

19

21

24

27

28

30

31

33

35

35

37

37

38

39

39

45

46

viii

5.0 Performance Results And Analysis ...

5.1 Dissolve Detection Based Technique ……………………………………………

5.5 Strict Clustering Based Technique ………………………………………………

6.0 Conclusion And Future Work …………………………………………..

6.1 Conclusion …………………………………………………………………….

6.2 Future Work …………………………………………………………………..

Our Publications ……………………………………………………………...

Bibliography …………………………………………………………………..

48

48

52

57

57

58

59

60

ix

List of Figures

1.1 Hierarchical structure of video ………………………………………………………

1.2 A video scene ………………………………………………………………………..

2.1 Shot boundary detection concept ……………………………………………………

3.1 Video transitions …………………………………………………………………….

3.2 Proposed approach using dissolve detection for shot identification ………………...

3.3 Pseudo Binary Image ………………………………………………………………..

3.4 (a) PDF and (b) CDF of binomial distribution using different values of Ns ………...

3.5 (a) Singular Vale Decomposition of matrix A (b) SVD using reduced dimensions ...

3.6 Proposed approach for shot dectection using strict clustering ………………………

3.7 Strict clustering using Nstep = 2 ………………………………………………………

4.1 Video file selector …………………………………………………………………...

4.2 Matlab file for dissolve detection based technique ………………………………….

4.3 Calculation of proponent pixels ……………………………………………………..

4.4 CDF for calculation of threshold1 in dissolve detection based technique …………..

4.5 Resulting shot locations using dissolve detectio based technique …………………..

4.6 Three-dimensional histogram using 16-bins ………………………………………...

4.7 Matlab file for strict clustering based technique …………………………………….

4.8 Three-dimensional histogram calculation …………………………………………...

4.9 Iterative clustering …………………………………………………………………...

4.10 Resulting shot locations using strict clustering based technique ……………………

4.11 Video inspection tool ………………………………………………………………..

4.12 Precision-Recall calcualator (a) Matlab file (b) Result for sample input ……………

5.1 Sample videos for experiments ……………………………………………………...

5.2 Recall-Precision curve by varying value of threshold2 using dissolve detection

based technique ……………………………………………………………………...

5.3 Experimental video sequence (Hawaii Flickr) with respective frame numbers …….

5.4 Recall-Precision curve by varying value of threshold2 using strict clustering based

technique for low action video ………………………………………………………

5.5 Recall-Precision curve by varying value of threshold2 using strict clustering based

technique for high action video ……………………………………………………..

2

2

7

18

18

20

23

25

28

30

40

40

41

41

42

42

43

44

44

45

46

47

49

50

51

53

55

x

List of Tables

2.1 Features used to detect various transitions …………………………………………..

5.1 Performance of dissolve detection based proposed technique in terms of recall and

precision ……………………………………………………………………………..

5.2 Performance of strict clustering based proposed technique in terms of recall and

precision (a) Low action videos (b) High action videos …………………………….

5.3 Comparison of various techniques with strict clustering based proposed technique

in terms of exectuion time …………………………………………………………...

10

51

54

54

Chapter 1

Introduction

Videos have become a popular means of entertainment over the years. Traditionally,

videos were created only by a limited number of producers. But now, the commoners

as well can afford and use with simplicity the video capturing devices, as a result of

which there is an increase in the amount of user generated videos. A large collection

of videos is readily available on various video sharing websites. Searching for videos

with desired content from such a large collection has become a tedious task. Also,

viewers want to have a better control over the video data. As a result, many video

browsing, indexing and summarization applications are being developed [1] [2] [3] [4].

These applications require the videos to be available in an elementary form called

shots. Thus, video shot detection becomes the primitive task in such applications.

Once the video shots are available, the keyframes from each shot can be extracted

and used to represent the respective shot. Various features of the keyframes as well as

the shot as a whole can then be used for content representation. These features can

later be used by the indexing and retrieval applications for retrieval of videos based

on the visual content.

Video shots are obtained by temporal segmentation of the entire video sequence,

such that each segment is an uninterrupted sequence of video frames. Gargi et al.

[5] define video shot as a contagious sequence of video frames recorded from a single

camera operation, representing a continuous action in time and space. Video shot is

1

also defined as the longest continuous frame sequence that originates from a single

camera take, i.e. the camera images in an uninterrupted run [6]. Thus, a video shot

is a small video segment, which is a part of a larger video and is captured without

any interruption from the time the camera is turned on to the time at which the

camera is turned off.A keyframe is that frame of a shot which conveys maximum

information about the visual content in the entire shot. Thus, a keyframe is the most

representative frame of a shot.

Figure 1.1: Hierarchical Structure of Video

(a) Physical scene captured by different cameras (b) Sequences captured by different cameras (shots)
combined to form the scene

Figure 1.2: A Video Scene

2

The hierarchical structure of a video is shown in figure 1.1. The frames are the

elementary units of a video. The frames captured in a single uninterrupted camera

take constitute a shot. A shot is therefore an elementary unit in the form of a shorter

video. A scene is series of shots that are coherent from a narrative point of view. In

other words, a scene is a collection of shots that convey different views of a single

event or object and contain the same objects of interest. The illustration of a scene

is shown in figure 1.2. The shots for a single event are captured by the individual

cameras. These shots are then combined appropriately to form the scene. The story

or the video is formed by placing the different scenes at appropriate places in the

timeline.

1.1 Motivation

Video browsing and retrieval have become important activities for searching videos

with desired content from a large collection. Also, with large number of user generated

videos being produced everyday, the size of such collection keeps on increasing. Video

browsing offers users a way to view and find relevant information from large number of

video documents. On the other hand video retrieval enables users to find a particular

video segment based on various attributes given as a query. These attributes may be

description, keywords or even a sample picture of the required video segment.

Both video browsing and video retrieval need the original video document to be

structured in some form, such that it forms a hierarchy (shown in Figure 1.1) of the

basic elements of video streams. The fundamental unit of representing any video

stream in the form of an independent video itself is a video shot. For any intelligent

video processing system, analysis of video-shots plays an important role to know the

characteristics of the video at hand. Therefore, the detection of these shots can be

considered as an elementary operation for such applications. In addition, detecting

shots manually is very cumbersome and highly subjective. Hence, automatic shot

boundary detection is required.

Detection of a shot boundary is done by comparing various feature of the video

3

frames. The histograms provide a compact summarization of the data (intensity

distribution) in a video frame and are also invariant to translation and rotation.

Thus, the histogram of successive frames in a single shot would be having a nearly

similar distribution of pixel intensities. These properties of the histogram feature and

its usefulness in shot detection, along with the increasing importance of video shot

detection in video indexing, retrieval and summarization applications, have motivated

to carry out dissertation on video shot detection based on histogram feature.

1.2 Objective

The shot boundaries may be separated by various transitions like cuts and dissolves.

If we are able to detect the dissolves, then the shot boundaries are automatically

detected, as they lie on the two sides of the dissolve transitions. However, when we

apply the existing approach for dissolve detection [7] to detect shot boundaries, it

suffers from the problem of over-segmentation due to misdetections. The resulting

shots are smaller video sequences that are parts of an originally larger shot. As a

result, frames in between these smaller video sequences, which are also a part of an

originally larger shot, are missed out. When we use the SVD based techniques for

shot detection, the time taken by the detection algorithm increases with the increase

in size of the feature matrix on which the SVD operation is to be applied. Therefore,

more the number of frames in the video, more is the size of the feature matrix and

more is the time taken by the detection algorithm.

Our objective is to present efficient techniques for shot detection that reduce num-

ber of misdetections and also have smaller execution time in comparison to the exist-

ing techniques. By reducing the misdetections we intend to overcome the problem of

over-segmentation. We create feature matrices of smaller sizes in order to reduce the

execution time.

4

1.3 Contribution

Our proposed techniques allow the shot boundary detection to be performed efficiently

using a simple histogram feature. The use of SVD helps to compare the frame features

using optimal approximations. As a result, we are able to find discontinuity in the

contents of consecutive frames and thus detect the change in shot. Shot detection in

videos having smooth shot transitions can be effectively performed using our dissolve

detection based technique. The main contribution of this technique is that it is able to

reduce the number of misdetection arising due to over-segmentation of the video, for

videos having smooth shot transitions. Our strict clustering based technique is useful

to detect shots in videos having both abrupt as well as smooth shot transitions. This

technique has performance as good as to that of the existing techniques. The main

advantage of using this technique is that it executes much faster in comparison to

the existing techniques. This will facilitate the indexing, summarization and retrieval

applications to respond quickly.

1.4 Outline

The organization of this report is as follows. In chapter 2 the theoretical background

and literature survey are presented. In chapter 3 we discuss the proposed shot detec-

tion techniques. In chapter 4 the implementation methodology along with the tools

used is presented. Performance results and analysis of the proposed algorithms is

discussed in chapter 5. Conclusion and future work are given in chapter 6.

5

Chapter 2

Theoretical Background And

Literature Survey

Frames surrounding the boundary of a shot exhibit significant variation in their con-

tent. The shot-boundary detection process is then the identification of considerable

discontinuities in the visual-flow of the frame sequence. The theoretical background of

the phases involved in shot detection process and the literature survey are presented

in the following sections.

2.1 Theoretical Background

Before proceeding with identification of the discontinuities some preprocessing is re-

quired. This step involves noise removal, frame resizing, etc. Now that the prepro-

cessing is done, the first step is feature extraction. A metric is then used to compare

the features between frames f and f + l (where l is the inter-frame distance i.e.). The

discontinuity value is the measure of the variation in features from frame f to f + l.

This value d(f, f + l) is an input to the detector which is compared to a pre-defined

threshold T . If d(f, f + l) ≥ T then a shot boundary between frames f and f + l is

detected [8]. This concept is shown in figure 2.1.

The features may be anything that can describe the visual content of a frame or

group of frames (say Color histogram, Dominant Color Descriptor, etc.) [9]. A feature

6

Figure 2.1: Shot Boundary Detection Concept

may also be a characteristic or property of a frame or a group of frames (say a pseudo

image representing the nature of variation of pixel intensity observed over a group of

frames).

2.1.1 Feature Comparison Techniques

To find similarity for the frame features, the singular value decomposition [10] concept

has been widely used due to its ability of comparing entities based on their conceptual

content. Therefore, it is important to understand the singular value decomposition of

a matrix and its use in feature comparison. The advantage of SVD over other feature

comparison metrics makes it suitable for shot detection.

Singular Value Decomposition (SVD)

Consider aM ×N matrix A. Then, singular value decomposition (SVD) of this matrix

is given by, A = UΣV T , such that the matrices U and V are M ×M and N ×N

singular matrices respectively. Σ is a diagonal matrix of singular values and is of

the same dimensions as that of A. The singular values of matrix Σ are in decreasing

order. This allows us to discard the insignificant singular values, so that the size

of both the matrices U and V are reduced, and still the reconstruction of matrix

7

A remains unaffected. This concept is shown later in figure 3.5. The comparison

using only significant singular values in SVD allows us a simple strategy for optimal

approximate fit using reduced matrices.

The example for document retrieval using SVD is given in [10]. In the example,

the key terms used in the various documents are arranged as the rows of matrix A,

while the various documents, according to their category, are arranged as the columns

of matrix A. The number of times a term appears in a document is the number of the

corresponding cell of matrix A. Using SVD on such a matrix and then reducing to

only the significant singular valued representation, the rows of matrix V Σ represent

the coordinates of the documents. These coordinates can then be used to measure the

cosine of their angle, which gives the measure of similarity between the documents.

Now, if the documents are replaced by the various frames in the video and the terms

are replaced by the features, then a similar method can be used to find similarity in

between the frames. The obtained discontinuity value can be used to detect the shots

in the video. We do not want an exact match of the frames, but we require high

similarity of frames based on the content. By using SVD, we are able to achieve this

very effectively, because, it does an optimal approximate comparison to give the most

appropriate values of discontinuity.

Ln norm

The discontinuity value in the frames can be measured using the Ln norm. If the

Kth feature F of the frames are represented by Fk, then the Ln norm [6] to find the

discontinuity value in frames fi and fj is,

DLn
(fi, fj) =

n

√√√√
K∑

k=1

∣∣∣Ffi(k)− Ffj(k)
∣∣∣
n

(2.1)

By varying the value of n, we get different distance measures. The advantage of

using this measure is that it is very simple to compute. But it has disadvantage is

that it is highly sensitive to small changes or noise. Therefore, it cannot be used for

8

approximate comparison which is required for frame comparison in shot detection.

Chi-square

For the histogram feature, the commonly used metric of similarity measure is the

chi-square. If the Kth feature F of the frames are represented by Fk, then the Ln

norm [6] to find the discontinuity value in frames fi and fj is,

Dχ2(fi, fj) =
K∑

k=1

(
Ffi(k)− Ffj(k)

)2

Ffi(k)
(2.2)

Chi Square is employed to test the difference between an actual sample and an-

other hypothetical or previously established distribution such as that which may be

expected due to chance or probability. For calculating the discontinuity value, Chi

Square can been used to test differences between two actual samples or features.

2.1.2 Frames Features

It is generally observed that the frames surrounding the boundary of a shot display a

significant change in their content. If the change is drastic then it is called a hard-cut

(or simply cut). When the change is gradual and spread over a group of frames,

it can be classified as a fade, wipe or dissolve transition. Out of these, the dissolve

transitions are the most difficult to detect, because, the change in visual content of the

frames in transition is very smooth. If the dissolves are detected, the shot boundaries

lie on the two sides of the dissolve transitions.

The change in contents can be detected by comparing various features of the

frames. These features need to be insensitive to object / camera motion and lighting

changes. Table 2.1 summarizes the features used by the existing techniques for shot

boundary detection.

9

Features Used / Can Detect Cuts Fades Dissolves
Color Histogram Yes - -
Edge Change Ratio Yes Yes Yes
Edge Based Contrast - Yes -
Standard Deviation of Pixel Intensity - Yes Yes

Table 2.1: Features used to detect various transitions

Color Histogram

Color content does not change rapidly within a shot, but across shots. Therefore color

histogram can be generated for every frame in the video and the comparison can be

done between them. If the difference in color histogram between two frames exceeds a

certain user specified threshold then a shot change can be marked. This makes color

histogram a suitable feature for abrupt change detection and has therefore been used

for cut detection.

Edge Change Ratio

For a given video if the edge information of the frames is used, then, for consecutive

frames we observe that some edges that were not present in the 1st frame appear into

position (in) in the 2nd frame, while some edges that are in the 1st frame are missing

or disappear (out) in the 2nd frame. The number of such in and out edges can be

counted. If both the frames belong to the same shot then the number of in and out

edges is more or less same. On the other hand if this difference is sufficiently large

then a shot change is detected.

If there are n pixels in the frame and the in edges are Xin and the out edges are

Xout for frames f and f − 1 respectively, then the edge change ratio (ECR) as define

in [11] is,

ECRf = max
(
Xin

n
,
Xout

n

)
(2.3)

Thus, whenever we obtain peaks in the frame-ECR plot, the peak indicates shot

change. Whenever an isolated peak is obtained, it signifies a hard-cut, whereas a

10

peaks spread over a number of frames indicates dissolve transitions.

Edge Based Contrast

The dissolve transition leads to change in contrast of the edge pixels in an image

[12]. This fact is exploited to detect dissolves using the Edge Based Contrast feature.

Consider two shots joined by a dissolve transition. The edge contrast of the 1st shot

slowly goes on decreasing, while that of the 2nd shot goes on increasing. Thus, the

contrast is the least at the midpoint of a dissolve. This helps in detecting dissolves

and thus the associated shots.

Standard Deviation of Pixel Intensity

Fade and Dissolve transitions are composed of monotonous change in pixel intensities.

Using sliding window one can monitor frames for their intensity change. If sufficient

numbers of pixels show monotonous change in their intensity within the window, we

can assign current frame to be frame in dissolve transition [7].

2.2 Literature Survey

The widespread availability of a large number of videos and the need of the users

to have a good control over the video data has led to the growing demand of tools

for efficient indexing, browsing and retrieval of the videos. Structural analysis of the

video in the form of shots is a prerequisite step in these application and therefore

shot boundary detection has been an active area of research for the past decade. The

transition between the shots can be either abrupt (cuts) or gradual (dissolve, fade).

Based on these transitions, many detection techniques have been proposed in the

literature. A comparative study of the early attempts for shot detection can be found

in [12] [13] [14] [15].

The abrupt change in the video content is easier to detect as compared to detecting

smooth change. Because of this reason, in the early days, the techniques for detection

11

of shots separated by cuts have been successful to a large extent. Cuts have been

successfully detected in [16] [17] [18] [19] [20] [21]. A simple method for the detection

of hard cuts using only interframe differences has been proposed in [16]. They used

the concept that a meaningful event is defined to be having a large deviation from

the expected background process. Therefore, such events would be the ones having

little probability of occurrence given a probabilistic background model. They defined

a hard cut when the interframe differences have little probability to be produced by

a given model of interframe differences of non-cut frames. This techniques is simple,

because, only the interframe differences are used and there is no need to perform

motion estimation or any other type of processing.

Hard-cut detection for archive film is addressed in [17] which is mainly for black-

and-white videos. This hard-cut detection system is based on modified phase corre-

lation such that hard-cut detection is carried out using spatially sub-sampled video

frames, and a candidate hard-cut is indicated in the case of low correlation. For

uniformly colored video frames the phase correlation is extremely sensitive to noise

and visual effects. Their work provides a through theoretical analysis to show the

usefulness of spatial sub-sampling.

The technique in [18] makes use of the intuition that frames preceding a cut are

similar to each other, and dissimilar to those following the cut. First, for each frame

in a video, they extract from video footage a set or window of consecutive, ordered

frames centered on the current frame. Second, that order the frames in the window

by decreasing similarity to the current frame. Last, they inspect the ranking of the

frames, and record the number of frames preceding the current frame in the original

video that are ranked in the first half of the list; calling this the pre-frame count. They

repeat this process for each frame. Cuts are then detected by identifying significant

changes in the pre-frame count between consecutive frames.

Porter et al. [19] have proposed a technique for detection of cuts in the fre-

quency domain. They perform normalized correlation in the frequency domain on

small blocks, and determine an overall correlation coefficient for each frame based

on the most similar blocks and by rejecting the more dissimilar ones. They use a

12

fixed threshold making it ideal for automatic shot detection. Since for videos having

different contents, using a fixed threshold may not always work for all the variety of

videos. Keeping this in mind, an adaptive threshold based techniques is proposed in

[20]. They proposed three models namely ’Covariance model’, ’Proportional model’

and ’Dugad model’ [22] for calculating the thresholds adaptively for every test video.

They showed that adaptive thresholding considerably improves the rate of detection

for shot cuts regardless of the method used.

Video cut detection technique using Gabor filter is proposed in [21]. Their feature

extraction technique that uses 2D Gabor filtering, computing tridimensional image

feature vectors for the video frames. The identification approach used in their pro-

posed technique is using an automatic unsupervised distance classification procedure

instead of using the traditional way of thresholding. They compute 3D image feature

vectors to provide frame content characterization.

A new approach for shot boundary detection in the uncompressed image domain,

based on the mutual information and the joint entropy between consecutive frames

is proposed in [23]. The mutual information is a measure of transported information

from one frame to another. Mutual information is used for detecting abrupt cuts,

where the image intensity or color is abruptly changed. In the case of a fades and

dissolve, where visual intensity is usually decreasing or increasing to a black image or

frame in the consecutive shot, the decreasing or increasing inter-frame joint entropy

respectively is used as a metric. Their approach combines two shot boundary detec-

tion schemes based on color frame differences and color vector histogram differences

between successive frames.

Cooper et al. [24] [25] use self similarity of the video across time for shot detection

where the similarity of every frame with every other frame in the video is tested. They

analyze the inter-frame similarity matrices to find the shot boundaries. The approach

is flexible to the choice of both feature parametrization and similarity measure and

it is robust because the data is used to model itself. They detect shot boundaries

by considering the self-similarity of the video across time. For each instant in the

video, the self-similarity for past and future regions is computed, as well as the cross-

13

similarity between the past and future. A significantly novel point in the video, i.

e. a shot boundary, will have high self-similarity in the past and future and low

cross-similarity between them. The color information for region based segmentation

in given in [26].

Texture feature representation found in [27] can be taken up as a feature for de-

tecting shots. Texture granularity refers to size of basic primitives of a given tex-

ture. Small granularity means that the given texture consists of large primitives and

vice versa—large granularity means that the texture consists of small primitives. In

other words, small granularity implies a finer texture while large granularity implies

a coarser texture. A texture with large primitives is fairly uniform over large areas

compared to a texture with small primitives which exhibits more frequent changes in

pattern over the image space. This leads to the idea of measuring granularity as the

spatial rate of change of the image intensity. Whenever the shot change occurs, both

abrupt and smooth, the texture of changes. Thus, the granularity of the texture also

changes and therefore can be used for shot change detection. Shots having similar

value of texture granularity, although the texture is not similar to each other cannot

be distinguished using this feature.

Zhao et al. [28] use a minmax optimization method to improve color based shot

detection. They proposed a new learning criterion which keeps the detection rate fixed

while at the same time reduces the false alarm rate. Shot boundary detection based

on Singular Value Decomposition (SVD) using the histogram feature is described in

[29] and [30]. In both these techniques a feature matrix is created which is subjected

to SVD so that the frame similarity can be determined. Similar frames can then be

grouped together to obtain shots.

In [29] the feature matrix consists of the frame histograms arranged as the columns.

The complete matrix is then subjected to SVD to find the cosine of angle between

consecutive frames. The frames for which the cosine of the in between angle is below

a user defined threshold are included in one cluster and those for which the cosine

exceeds the user defined threshold are put into different clusters. These clusters form

the various shots in the video. The advantage of using SVD in this case is that the

14

approximate comparison of the frame histograms is possible using reduced singular

matrices. This technique is able to detect the shots separated by both the abrupt as

well as smooth transitions. As the number of frames increase in the video, the size of

the feature matrix will also increase. This leads to increase in time to compute the

the SVD of the feature matrix. Therefore, although this technique is suitable to be

used for videos having abrupt as well as smooth transitions, the time taken will be

very large as the video size increases. Also, for computing the SVD of a large matrix,

more resources will be required, making this technique expensive in terms of both

time and cost.

In the technique used by [30], the feature matrix is constructed for a small number

of frames (i.e. frames in a fixed sized observation window). The rows of the feature

matrix represent the color histogram of the frames in the observation window and

this matrix is updated as the new frames enter for shot detection. The advantage of

this technique is that the complete video is not required at hand before starting the

detection process, unlike all the other techniques. This makes the technique suitable

for real time shot detection as and when the new frames become available. Once the

feature matrix is available, it is subjected to SVD to obtain the rank of the frame

under consideration. This is followed by rank tracing, which results in detection of

the shot boundaries. This technique is suitable for sports videos.

Su et al. [7] have presented an algorithm to detect the dissolve type transitions

using change in pixel intensity over time. If the smooth shot transitions are detected

using this technique, then it can be used to declare shot boundaries which lie on the

two sides of such smooth shot transitions. The detection of dissolve transitions is done

by observing the change in pixel intensity over a group of frames. If for the video

frames, a certain minimum proportion of pixels show a monotonous change in pixel

intensity over the observation window, then such frames are declared to be in dissolve

type transitions. Once the dissolve type transitions are detected, shot boundaries are

the ends of these smooth transitions.

15

Chapter 3

Design And Analysis

Shot detection is the splitting of a video into temporal units, such that each unit

is a sequence of consecutive frames, taken by a single camera, representing contin-

uous action in time and space. As mentioned in chapter 2, various features of the

frames are extracted and compared in order to find a discontinuity value, which is

compared against a pre-specified threshold to declare a shot boundary. Our proposed

shot detection techniques are discussed in detail in the following sections. Both our

proposed shot detection techniques use the histogram feature along with SVD for

shot identification.

3.1 Dissolve Detection Based Shot Identification

Shot boundary detection for shots separated by abrupt changes has been successful

to a large extent, but detecting shot boundaries with gradual transitions in between,

has been very challenging. The gradual change spread over a group of frames can

be classified as a fade, wipe or dissolve transition. These transitions are the most

difficult to detect, because, the change in visual content of the frames in transition

is very smooth. If these transitions are detected, the shot boundaries lie on the two

sides of the dissolve transitions. These transitions are discussed below.

• Fade-out : The frames in this transition go on fading out until the original content

16

of the shot completely vanishes. What remains is a totally black frame. This

effect is usually used in movies to end a scene very smoothly. A sample of such

a transition is shown in figure 3.1(a).

• Fade-in: The frames in this transition appear into position from a completely

dark sequence. The each successive frame becomes brighter till the shot starts.

This effect is popularly used in movies to start a scene smoothly. Figure 3.1(b)

shows a fade-in transition.

• Dissolve: A dissolve transition is typically a combination of a fade-out transition

and fade-in transition where the dark sequence is replaced by another shot. The

ending frames of the first shot go on fading-out slowly, and at the same time the

frames in the second shot appear into position (fading-in). Thus, the transition

from one shot to another is very smooth. This effect is popularly used in the

video industry for smooth scene and shot changes. An example of this effect is

shown in figure 3.1(c).

• Wipe: This transition is not a very smooth transition. The frames of the first

shot in this transition are replaced by frames in the second shot in steps. Initially

no frames in the second shot are visible. Gradually in steps, the parts of frames

in the second shot replace the respective parts of the frames in the first shot.

Such a horizontally replacing wipe transition is shown in figure 3.1(d).

In wipes, the difference in consecutive frames is small but significant such that

the discontinuity in the spatial domain is obvious and can be used for purpose of

detection. In dissolve, fade-out and fade-in transitions (together addressed as dissolve

type transitions from here on), it is difficult to find a clear distinction between two

consecutive frames, thus often becoming hard to detect. Another problem that makes

dissolve detection difficult is that it is often confused with motion.

In the proposed approach, we start with feature extraction, followed by detecting

dissolve type transitions. This enables us to divide entire video into two categories

viz. dissolve frames (which are part of dissolve type transitions) and non-dissolve

17

(a) Fade-out (b) Fade-in

(c) Dissolve (d) Wipe

Figure 3.1: Video Transitions

Figure 3.2: Proposed Approach Using Dissolve Detection For Shot Identification

18

frames. Simply combining the consecutive non-dissolve frames and assuming these

as shots suffers from the problem of over-segmentation due to misdetections. The

resulting shots are smaller video sequences that are parts of an originally larger shot.

As a result, the frames in between these smaller video sequences, which also are a

part of the originally larger shot, are missed out. These smaller video sequences

called Sequence of Non-Dissolve Frames (SNDF) give a rough estimation of shots

present in the video. A generalized histogram for every SNDF is calculated using

the histograms of the frames present in the respective SNDF. We then iteratively

compare these generalized histograms using Singular Value Decomposition (SVD) to

merge similar SNDF. Figure 3.2 shows the flow of our approach. We discuss in detail,

the extraction of the required features, dissolve detection and histogram comparison

using SVD in the following subsections.

3.1.1 Feature Extraction

Features depict the visual aspects of the content of the video. In general, the shot

boundary is detected by comparing the global features of the frames which are sep-

arated by a certain fixed distance and then assigning a discontinuity value to these

pair of frames. Whenever the discontinuity value crosses a certain threshold, a shot

boundary is said to be detected between these pair of frames.

In our approach, we extract two global features for every frame in the video. The

first feature is the frame histogram. Histograms represent the distribution of the

pixel intensities in frame. Whenever there is a drastic change in the content of a

pair of frames, the pixel intensity distribution changes significantly. This property of

histogram feature is exploited for the detection of shot boundaries. The second feature

is the ratio of number of pixels changing intensity monotonously in an observation

window to the number of pixels changing intensity at least once in the same window.

This feature is used to declare a frame to be a part of a dissolve type transition, and

has been used for dissolve detection in [7].

A dissolve transition consists of a certain number of final frames of the first shot

19

Figure 3.3: Pseudo Image BL
i for ith frame

and initial frames of the second shot. Fade transition can also be considered as a

special case of the dissolve transition where either of the shots is a dark sequence.

We have therefore referred together the dissolve transitions and fade transitions as

dissolve type transitions throughout this report. It is observed in a dissolve type

transition that the intensity of the pixels in successive frames either increases or

decreases. With this observation, the change in pixel intensity is noted over a group

of frames in a sliding window fashion. Wherever the change is seen to be monotonous,

the count of such pixels is associated with the current frame. Also the count of pixels

changing intensity at least once in the same observation window is also associated to

the current frame.

Assume that the observation window consists of L+ 1 frames and let fk denote

the kth frame in the video. For any ith frame in the video, the observation window

will span [i− L+ 1, i] frames. A pseudo binary image BL
i will then be generated for

the ith frame such that a pixel (x, y) in this pseudo binary image will have a value

1 if monotonous change is observed in the observation window (proponent pixels), 0

otherwise. Figure 3.3 shows a sample of pseudo image BL
i for the ith frame.

20

BL
i (x, y) =

1, if, fk(x, y)− fk−1(x, y) < 0 ∀k ∈ [i− L+ 1, i]

1, if, fk(x, y)− fk−1(x, y) > 0 ∀k ∈ [i− L+ 1, i]

0, Otherwise

(3.1)

Similarly, the number of pixels changing intensity at least once in the observation

window can be calculated as follows.

NL
i (x, y) =

0, if, fk(x, y) = fk−1(x, y) ∀k ∈ [i− L+ 1, i]

1, Otherwise

(3.2)

S(N,L, i) =

∑

x,y

BL
i (x, y)

∑

x,y

NL
i (x, y)

(3.3)

S(N,L, i) in equation 3.3 is the ratio of number of pixels changing intensity

monotonously in an observation window to the number of pixels changing intensity

at least once in the same window.

3.1.2 Dissolve Detection

For dissolve detection, we use the method proposed in [7] as follows. The S(N,L, i)

value of every ith frame is compared with a certain threshold. Frames for which

S(N,L, i) value is above the threshold are declared to be in a dissolve type transition.

The probability of monotonous change in pixel intensity over a group of L+ 1 frames is

taken to be P (BL(x, y) = 1) = (1/2)L−1. Therefore, P (BL(x, y) = 0) = 1− (1/2)L−1.

Using the binomial expression for these events the following CDF is calculated.

21

CDF (Ns, L, δ
′

) =

δ
′

∑

K=0

(
Ns

K

)
(P (BL(x, y) = 1))K

×(P (BL(x, y) = 0))Ns−K

(3.4)

where Ns is the minimum value of
∑

NL
i (x, y). The monotonous change in pixel

intensity in the window can be accounted to two reasons viz. dissolve type transition

and change in background environment. In equation 3.4, δ
′

is the number of pixels

changing intensity monotonously in the observation window due to change in the

background environment.

The value of Ns is taken as the minimum value of
∑

NL
i (x, y) because, as the value

of
∑

NL
i (x, y) goes on increasing, the curve of the CDF in equation 3.4 becomes

steeper. As the curve becomes steeper, the CDF takes less time to saturate. On

the other hand, if the value of
∑

NL
i (x, y) goes on decreasing, the curve becomes

smoother, thus taking longer time to saturate. The smallest value of
∑

NL
i (x, y)

will assure that it take longest time for the curve to saturate. Now if we take the

very point at which the CDF saturates to 1 as the cut-off, it will correspond to the

maximum number of active pixels due to background environment. If the number of

active pixels exceeds this number, then the exceeding active pixels are due to dissolve

type transition. The value of δ
′

corresponding to saturation point can then be used

to calculate the threshold.

δ1 =
δ
′

Ns

(3.5)

where δ1 is the threshold. The frames for which S(N,L, i) ≥ δ1 are declared to

be the frames in dissolve type transition. The remaining frames are declared as non-

dissolve frames. Frames with no dissolve frames in between, are grouped together as

SNDF.

We have detected dissolves by observing the change in pixel intensity over a group

22

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

Proportion of Proponent Pixels

P
D

F

1200

1000

800

600

400

200

Values of Σ N
i

L
(x,y)

(a)

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

Proportion of Proponent Pixels

C
D

F

1200

1000

800

600

400

200

Values of Σ N
i

L
(x,y)

(b)

Figure 3.4: (a) PDF and (b) CDF of binomial distribution using different values of ΣNL
i (x, y). The

CDFs for smaller values of ΣNL
i (x, y) take longer time to saturate.

23

of frames. Pixel intensity can change many times within a shot. Also, within a clip,

the variation in background causes change in pixel intensity from frame to frame.

Thus, using only pixel intensity as a cue for shot detection causes over-segmentation

of the video. We obtain smaller video sequences that are parts of an originally larger

shot. These sequences (SNDF) therefore cannot be considered as shots. To extract

shots from SNDFs, we combine similar SNDFs using the process explained in the

following subsection.

3.1.3 Histogram Comparison using SVD

In this step, we compare histograms of consecutive SNDFs using SVD and merge

them into one SNDF if found similar. The process starts with obtaining a histogram

representing each SNDF. Consider hi to be the histogram of frame fi in the SNDF

Sj. The SNDF histogram is calculated as,

H(Sj) =

hi if i = 1 ∀fi ∈ Sj

H(Sj) + hi

2
if i 6= 1 ∀fi ∈ Sj

(3.6)

We then form a matrix A, columns of which are the SNDF histograms. A is fac-

torized to A = UΣV T using Singular Value Decomposition (SVD). SVD is a powerful

linear algebra technique which exposes the geometric structure of a matrix. A matrix

can be seen as a transformation from one vector space to another. The rank of a

matrix, singular values and orthogonal matrices of a given matrix can be found using

SVD. This operation can be applied to any real matrix A. SVD has been used suc-

cessfully for image compression for a few years [31] and has also found its application

in Video Shot Segmentation. Following is the mathematical explanation of SVD.

If A is an M ×N matrix, then U is an M ×N matrix of left singular vectors, V

is an N ×N matrix of right singular vectors, and Σ is a matrix of singular values

such that Σ = diag(σi, σ2, ..., σR), where R is rank of A and σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0

24

(a)

(b)

Figure 3.5: (a) Singular Value Decomposition of matrix A. (b) Singular Value Decomposition of
matrix A considering only k singular values.

[29]. Thus, σ1 and σR are the most significant and the least significant singular values

respectively. If we decide to retain only the first K significant singular values then we

can approximately reconstruct A with dimensions M ×N using A = UΣV T , where

U is M ×K, Σ is K ×K and V T is K ×N . In fact, if K = R then we can exactly

reconstruct A.

Now, if the columns of A are considered as documents and the rows of A (i.e.

gray levels) are considered as terms, then we can view A as a term-document matrix.

Deerwester et al. [10] have presented a technique to compare two documents using the

Latent Semantic Analysis (LSA). They considered rows of matrix V Σ as coordinates

of the documents. Let us represent these coordinates by ṽi for every ith document

i.e. let the ith row of V Σ be represented by ṽi which corresponds to SNDF Si. The

cosine of angle between coordinates of two documents denotes the measure of their

similarity. If ṽi and ṽj are similar, then the cosine of angle between them is closer to

1, else it is closer to 0. Thus, to measure similarity between SNDFs Si and Sj we use

the following metric.

25

Φ(Si, Sj) = cos(ṽi, ṽj) =
(ṽi.ṽ

T
j)

‖ṽi‖ ‖ṽj‖
(3.7)

Based on a threshold (δ2) which we derived by experimental observations, we decide

whether or not to combine the two consecutive SNDFs Si and Sj. Thus, SNDFs are

combined to dynamically formN clusters. These clusters are nothing but the modified

SNDFs. We use the method proposed in [29] with minor modifications to suit our

technique for combining similar SNDFs.

• Initially the first two SNDFs satisfying the condition Φ(Si, Si+1) ≥ δ2 are com-

bined into one cluster C1. The mean of this cluster is then calculated as,

m̃1 =
ṽi + ṽi+1

2
(3.8)

• The next SNDF Si is tested for addition in the same cluster.

cos(m̃1, ṽi) ≥ δ2 (3.9)

if this condition is satisfied, then m̃1 is updated, else Si becomes the seed of a

new cluster with mean m̃j = ṽi. These steps are repeated till all the SNDFs are

processed.

If the number of these clusters is the same as number of SNDFs in the previous

step, then we declare the SNDFs obtained in the previous step as the final shots.

If this is not the case, then the modified SNDFs Si for corresponding cluster Ci are

calculated as follows.

• Start of SNDF Si = Start of 1st SNDF in cluster Ci

• End of SNDF Si = End of last SNDF in cluster Ci

The new SNDF histograms need to be calculated to proceed with the next iteration.

The SNDF histograms for the modified SNDF are calculated as follows.

26

H(Si) = mean(HiD, hiM) (3.10)

where HiD represents SNDF histograms of the SNDF in cluster Ci, and hiM rep-

resents the histogram of the frames in between the SNDFs in cluster Ci which were

detected as dissolve frames previously. Once we have the modified SNDF histograms,

we start the next iteration of factorizing the SNDF histogram matrix using SVD.

Thus, combining the similar SNDFs will assure that the frames in-between the simi-

lar SNDFs, that were delcared to be frames in dissolve type transition previously, will

not be misdetected. This will improve the performance of the detection algorithm.

3.2 Strict Clustering Based Shot Detection

In this approach, we propose a divide-and-merge technique for shot detection. The

video frames can be initially considered as independent clusters, similar to that of

leaf nodes in a tree structure. Based on histogram similarity, the frames can be

combined to form modified clusters. This process of comparison and merging can

be performed iteratively until no more merging is possible. The final clusters having

number of frames less than a certain minimum number are declared to be frames in

shot transition and are therefore discarded. The remaining clusters are the finally

obtained shots.

We start with extraction of 3D histogram feature for every frame. The initial

frames stand as independent clusters at this stage. We then compare every group of

Nstep number of consecutive frames for similarity. Only the consecutive similar frames

in every group are combined into a single cluster. The 3D histogram of each cluster is

then modified accordingly. This initial clustering is done very strictly so that only the

almost identical frames remain in one cluster. We then iteratively combine similar

clusters. Finally, we discard the clusters having frames less than a certain minimum

number to obtain the final shots. We discuss in detail every step in the following

27

Figure 3.6: Proposed Approach for Shot Detection Using Strict Clustering

subsections.

3.2.1 Feature Extraction

Features convey the prominent attributes of a frame. As mentioned earlier, for shot

detection, the frame features are compared with a pre-defined threshold to find the

visual discontinuity. In this approach we have used the three-dimensional histogram

feature in the RGB color space with 16 bins. Thus, the dimensionality of the feature

vector is 163 = 4096. The calculation of this three-dimensional histogram is done as

follows.

Since the range from 0 to 255 (assuming that the frame is 4-bit image) is to be

divided into 16 bins of equal sizes, the values of Rc, Gc and Bc are,

28

Rc/Gc/Bc =

0 if r/g/b ∈ [0, 15]

1 if r/g/b ∈ [16, 31]

2 if r/g/b ∈ [32, 47]

3 if r/g/b ∈ [48, 63]

4 if r/g/b ∈ [64, 79]

5 if r/g/b ∈ [80, 95]

6 if r/g/b ∈ [96, 111]

7 if r/g/b ∈ [112, 127]

8 if r/g/b ∈ [128, 143]

9 if r/g/b ∈ [144, 159]

10 if r/g/b ∈ [160, 175]

11 if r/g/b ∈ [176, 191]

12 if r/g/b ∈ [192, 207]

13 if r/g/b ∈ [208, 223]

14 if r/g/b ∈ [224, 239]

15 if r/g/b ∈ [240, 255]

(3.11)

where Rc, Gc and Bc will correspond to the respective bin numbers in the RGB

color space for a pixel (x, y) having intensities [r,g,b] in the respective color chan-

nels. Number of intensities in every bin is (28)/16 = 16. Therefore, out of the 4096

intensities, the intensity of a pixel (x, y) with RGB color [r,g,b] will be I(x, y) as

follows.

I(x, y) = Rc(x, y) ∗ 16
2 +Gc(x, y) ∗ 16

1 + Bc(x, y) ∗ 16
0 (3.12)

All the pixel in the frame can be processed in this manner to obtain the three-

dimensional histogram. Once the three-dimensional histogram feature is extracted

for every frame, we can proceed with the initial strict clustering.

29

Figure 3.7: Strict Clustering using Nstep = 2. Fis are the frames, Cjs are clusters obtained using δ1
as cut-off. Frames in one group for which cos(ṽi, ṽi+1) ≥ δ1 are combined into one cluster (groups
n+ 1, n+ 3, n+ 4), else are placed in different clusters (group n+ 2).

3.2.2 Strict Clustering

We consider the frames to be in distinct groups such at each group consists of at most

Nstep consecutive frames. The histograms of frames in one group are then arranged as

columns of matrix A. Matrix A is subjected to singular value decomposition (SVD) to

obtain A = UΣV T , where U and V are singular matrices and Σ a matrix of singular

values (similar to that in section 3.1.3).

The rows of matrix V Σ correspond to coordinates of the video frames in a M

dimensional space, where M = 4096. Let us represent these coordinates by ṽi for

every ith frame in the group such that 1 ≤ i ≤ Nstep. Cosine of the angle between the

coordinates of similar frames is closer to 1 and that for dissimilar frames is closer to

0 [29]. In order to strictly group only the almost identical frames in one cluster we

use a threshold δ1 such that δ1 ≈ 1. The cosine of the angle between coordinates of

frames i and i+ 1 is given by,

cos(ṽi, ṽi+1) =
(ṽi.ṽ

T
i+1)

‖ṽi‖ ‖ṽi+1‖
(3.13)

Only if cos(ṽi, ṽi+1) ≥ δ1 is satisfied, ith and i+ 1th frames are merged into one

cluster, else they are in different clusters. If the frames are merged into one cluster

Cj then the cluster histogram H(Cj) is calculated as follows.

30

H(Cj) =

hi if i = 1 ∀fi ∈ Cj

H(Cj) + hi

2
if i 6= 1 ∀fi ∈ Cj

(3.14)

where fi is the i
th frame in cluster Cj. Three-dimensional histogram of frame fi is

represented by hi. Now that the almost identical consecutive frames are in the same

cluster, we can compare the cluster histograms for similarity. This will allow us to

combine non-identical yet very similar frames into one cluster.

If we again use δ1 to decide the cluster histogram similarity, only the nearly iden-

tical consecutive frames that were in different consecutive groups of Nstep number

of frames can be merged into one cluster. But, the frames that were judged to be

non-identical (although they are similar as far as the shot is concerned) will never be

merged into one cluster. On the other hand, if we use a different threshold δ2 such

that δ2 < δ1, both the almost identical frames as well as the similar consecutive frames

can be combined into a single cluster. Also, if we directly use δ2 for strict clustering

instead of δ1, there are chances that the non-similar frames are also combined into

a single cluster, which would lead to false detection. Thus, the use of two different

thresholds is justified. In the following subsection, we discuss the comparison and

merging of similar clusters.

3.2.3 Histogram Comparison and Cluster Merging

Once we have the cluster histograms, we can iteratively compare and merge clusters

in one group having similar histograms. The procedure for histogram comparison

is the same as that used for strict clustering, with an exception that the threshold

used is δ2 (obtained experimentally) instead of δ1 such that δ2 < δ1. The process of

iterative comparison and merging of clusters in carried out until no further refinement

is possible.

The histograms of clusters in one group are arranged as columns of matrix A.

31

Matrix A is subjected to SVD such that we again obtain A = UΣV T . The rows

of matrix V Σ now correspond to the coordinated of each cluster histogram. Let

these rows be denoted by c̃j for every cluster Cj in the respective group such that

1 ≤ j ≤ Nstep. The cosine of angle between the coordinates of cluster histograms will

decide the similarity. The cosine is calculated similar to that in equation 3.13 as

follows.

cos(c̃j, c̃j+1) =
(c̃j.c̃

T
j+1)

‖c̃j‖ ‖c̃j+1‖
(3.15)

The condition for merging clusters Cj and Cj+1 is as follows.

cos(c̃j, c̃j+1) ≥ δ2 (3.16)

If equation 3.16 is not satisfied then the respective clusters are not merged. The

process of comparing and merging clusters is iterative. If the number of clusters

obtained in the current iteration is the same as that obtained in the previous itera-

tion, then we deduce that no clusters have been combined in the current iteration.

Therefore, any further iteration of comparison and merging of clusters will not cause

any refinement. We then proceed to the shot detection step. If any refinement is

possible, then the histograms of the modified clusters (Ck
Mod) are calculated for the

next iteration as follows.

H(Ck
Mod) =

H(Cj) if j = 1 ∀Cj ∈ Ck
Mod

H(Ck
Mod) +H(Cj)

2
if j 6= 1 ∀Cj ∈ Ck

Mod

(3.17)

where k is the number of modified clusters. This iterative process will continue

until no further refinement is possible i.e. k is equal to the number of clusters obtained

in the previous iteration.

32

3.2.4 Shot Identification

The final clusters obtained after iterative comparison of clusters will consists of frames

having similar intensity distribution with respect to adjacent frames in the same

cluster. Frames in one shot exhibit a very small amount of variation in content with

respect to the neighboring frames. Therefore, the intensity distribution will also vary

in very small amount. In other words, the intensity distribution of these frames will

be similar. With this observation, the clusters we obtained can be considered as final

shots. But, we need to keep in mind that frames in transitions (like dissolve and fade

transitions) are also having similar content as those of the neighboring frames. Since

the content similarity in these transitional frames is not as much as that of frames

in one shot, the transitional frames will form large number of clusters, each cluster

having small number of frames. Therefore, what we obtained are not the final shots,

but candidates for the actual shots present in the video. One can then identify the

clusters having frames less than a certain minimum number and discard them from

the set of final cluster. The remaining clusters are the different shots present in the

video sequence.

By observing a large number of videos, one can find an average of smallest durations

of a video shot transition. By knowing the frame rate (i.e. number of frames shown per

second), the number of frames covered by the smallest transitions can be calculated.

We set this number (δ3) as the cut-off, such that, clusters having number of frames less

than or equal to δ3 are the frames in shot transition and therefore can be discarded.

The remaining clusters give the different shots present in the video. Thus, only the

clusters satisfying the following equation are considered as shots.

n(Cj) ≥ δ3 (3.18)

where Cj is the jth cluster and n(Cj) is the number of frames in the cluster Cj.

Discarding the clusters that do not satisfy the equation 3.18 takes care of elimi-

33

nating smooth transitions so as to avoid false detection. The abrupt transitions (like

cuts) are taken care of initially by strict clustering followed by iterative comparison

and merging of similar clusters (i.e. clusters having similar contents). Thus, this

technique for shot detection can effectively detect the shot boundaries.

Summary

In this chapter we discussed our proposed techniques for video shot detection. In

the dissolve detection based technique, we first extract the sequences of consecutive

frames not in dissolve type transitions (SNDFs). Later, we iteratively merge the sim-

ilar consecutive SNDFs, including the in between frames, until no further refinement

is possible. By this, the number of misdetections are reduced. This techniques works

with videos involving dissolve type shot transitions. For videos with both smooth

as well as abrupt shot transitions, our strict clustering based technique starts with

forming initial clusters such that each cluster includes only the almost identical con-

secutive frames. Later, we iteratively merge the similar consecutive clusters until no

more merging is possible. Finally, we discard the clusters having number of frames

less than a threshold value and consider all other clusters as the final shots.

34

Chapter 4

Implementation Methodology

The two proposed techniques for shot detection have been implemented according to

the steps discussed in sections 3.1 and 3.2. The implementation has been done in

Matlab [32]. To read the video sequence into Matlab and export the video shots, we

used the videoIO toolbox [33]. For implementation of the two proposed techniques

we started with feature extraction. This was followed by feature comparison to find

the visual discontinuity for shot for shot boundary identification. The metrics used

for performance evaluation of these algorithms are presented in the following section.

4.1 Methodology of Evaluation & Metrics

The basic measures for performance evaluation in shot detection (or simply detection

in general) are the recall and precision values [5] [6] [34]. Recall is the measure of

how much proportion of the correct entries are detected. Precision is the measure of

how much of the detected entries are correct.

For calculating recall and precision, we need to have the set of actual correct and

incorrect entries. Let D denote the correct detections (i.e. intersection of the set of

entries detected as correct by the algorithm and the set of actual correct entries), MD

denote the misdetections (i.e. intersection of the set of entries detected as incorrect by

the algorithm and the set of actual correct entries) and FD denote the false detections

(i.e.intersection of the set of entries detected as correct by the algorithm and the set

35

of actual incorrect entries). Recall and precision [5] [6] [34] [7] are then calculated as

follows.

Recall =
D

D +MD
(4.1)

Precision =
D

D + FD
(4.2)

In the context of classification tasks, the terms true positives (TP), true negatives

(TP), false positives (fTP) and false negatives (FN) are used to compare the given

classification of an item (the class label assigned to the item by a classifier) with the

desired correct classification (the class the item actually belongs to) such that,

• TN / True Negative: case was negative and predicted negative

• TP / True Positive: case was positive and predicted positive

• FN / False Negative: case was positive but predicted negative

• FP / False Positive: case was negative but predicted positive

then, recall and precision [35] are calculated as follows.

Recall =
TP

TP + FN
(4.3)

Precision =
TP

TP + FP
(4.4)

Precision and recall are set based measures. That is, they evaluate the quality

of an unordered set of retrieved documents. The precision can be plotted against

recall to visualize the performance of the retrieval technique. If we try to improve the

36

performance of a technique such that the number of correct detection increases, it

may happen that some incorrect entries may also be detected as correct. Thus, if we

try to improve the recall, the precision may drop. Similarly, if we try to reduce the

number of false detections, some correct entries may as well be detected as incorrect

entries, leading to increase in misdetections. Therefore, increasing the precision may

reduce recall. Therefore, the retrieval algorithm should have performance such that

both the recall and precision values are well balanced.

Since the evaluation is done at frame level, we used the following definitions of

frame recall and frame precision.

frame recall =
#frames shared between detected and reference shots

#frames of reference shots
(4.5)

frame precision =
#frames shared between detected and reference shots

#frames of detected shots
(4.6)

For evaluating the performance of the proposed techniques we used frame recall

and frame precision as metrics.

4.2 Experimental Setup

The experiments for the proposed techniques are done in Matlab using the videoIO

toolbox for reading the video frames. The experimental setup for these techniques is

as follows. The experiments have been performed on an Intel Core 2 Duo machine

with 4GB RAM.

4.2.1 Dissolve Detection Based Shot Identification

This technique of shot detection is based on dissolve detection. Therefore, videos were

carefully chosen for experiments such that most of the shot transitions were of dissolve

type (viz. fade-in, fade-out and dissolve). These videos have been downloaded from

37

the popular video sharing website YouTube [36]. None of these videos were edited

for the experimental purpose, except the fact that they had to be scaled to 240× 352

resolution to maintain uniformity.

Ground truth entries are required for the calculation of recall and precision. As the

ground truth for these videos was not available, we sought help of human volunteers

to determine the locations of the shot boundaries. The shot boundaries determined

in this manner are subjective as the observations might vary depending on each

volunteer. We have therefore considered the average of the observations made by

different volunteers as the final locations of the shot boundaries and have used them

as the ground truth.

The various parameters used for the experiments are (a) Observation Window

Size (b) δ1 and (c) δ2. To detect the dissolve type transitions we set the size of the

observation window to 6 frames assuming the smallest dissolve duration in a 30 fps

video is of 0.2 sec. The value of δ1 is calculated dynamically according to the equation

3.5. We set the values of δ2 in the range [0.75, 0.99] to experimentally observe the

change in recall-precision values.

4.2.2 Strict Clustering Based Shot Detection

Most of the videos chosen for experimenting this technique have been downloaded

from the popular video sharing website YouTube [36]. None of these downloaded

videos were edited for experimental purpose except the fact that they had to be

scaled to 240× 320 resolution to maintain uniformity. The ground truth entries for

these videos was not available, so sought help of human volunteers to determine the

locations of the shot boundaries. Human observations being subjective, we considered

the average of the observations made by different volunteers as the final locations of

the shot boundaries and have used them as the ground truth.

Apart from the downloaded videos, we shot a few scenes and generated videos that

can be classified broadly into (a) Indoor video (b) Outdoor and (c) High Action and

(d) Moving Camera. We included both abrupt and smooth shot transitions manually

38

at appropriate locations in these videos. For this video editing task, we used the

Kino Video Editor (an open source video editing software on Linux platform) [37].

Therefore, the ground truth for shots in these videos became available.

The various parameters used for the experiments are (a) Nstep (b) δ1 and (c) δ2.

The value of number of frames in a group (Nstep) has been taken to be 2. This is

because more the value of Nstep, more will be the number of columns in the matrix to

be decomposed, and more will be the time taken for performing SVD. The minimum

value that can be chosen for Nstep is 2. Since δ1 is the threshold used in the strict

clustering step, where we intend to include only the almost identical frames into one

cluster, the value of δ1 needs to be very near to 1. Therefore, we chose δ1 = 0.99.

Finally, we set the values of δ2 in the range [0.30, 0.90] to experimentally observe the

change in recall-precision values.

4.3 Test Applications

The two proposed techniques have been implemented in Matlab. We created a li-

brary of the commonly used functions by the proposed techniques. The videos for

which ground truth was not available and we considered the average of volunteers’

observations as ground truth, a frame-by-frame inspection of the videos was done by

the volunteers. To facilitate the frame-by-frame inspection of a video, we developed

a video-player like application in which the user can control the frame rate, jump

to a specific frame in the video etc which are the common operations required for a

detailed inspection of the frames in the video.

4.3.1 Proposed Techniques

Following are the screen shots of the proposed techniques in execution.

39

Figure 4.1: Video File Selector

Figure 4.2: Matlab file for Dissolve Detection Based Technique

40

Figure 4.3: Calculation of Proponent Pixels

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Proportion of Proponent Pixels

C
D

F

data1

(0.0676,1.0)

Figure 4.4: CDF for calculation of δ1 in the dissolve detection based technique

41

Figure 4.5: Resulting Shot Locations (frame numbers) using Dissolve Detection Based Technique.
Column 1 denotes shot start and column 2 denotes shot end

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1000

2000

3000

4000

5000

6000

Intensity

P
ix

e
l
C

o
u

n
t

Figure 4.6: Three-dimensional histogram (16 bins) of a frame (8-bit)

42

Figure 4.7: Matlab file for Strict Clustering Based Technique

43

Figure 4.8: Three-dimensional histogram calculation

Figure 4.9: Iterative Clustering

44

Figure 4.10: Resulting Shot Locations (frame numbers) using Strict Clustering Based Technique.
Column 1 denotes shot start and column 2 denotes shot end

4.3.2 Video Inspection Tool

The screen shots of the video inspection tool for frame-by-frame inspection are shown

in figure 4.11(a). Using this tool one can do a frame by frame inspection of the video.

Both forwarding and reversing the video, setting frame-rate, jumping to a desired

frame can be done using this tool. The current frame number, total number of frames

in the video and the file name are visible in the Control Panel.

45

(a)

(b)

Figure 4.11: Video Inspection Tool

4.3.3 Precision-Recall Calculator

Following are the screen shots of the precision-recall calculator.

46

(a)

(b)

Figure 4.12: Precision-Recall Calculator. (a) Matlab file of the calculator. (b) Metric values for an
input video

47

Chapter 5

Performance Results And Analysis

The performance of the proposed techniques is measured in terms of recall and pre-

cision values discussed in section 4.1. The performance of the strict clustering based

technique is compared with the existing histogram based techniques for shot detec-

tion proposed in [29] and [30]. For the dissolve detection based shot identification

using SVD technique, we compare the performance with method of shot identification

using only dissolve detection [7]. In the following sections we discuss the performance

results of the proposed techniques.

5.1 Dissolve Detection Based Technique

Video shots are separated by various transitions. Therefore, by detecting the transi-

tions one can identify the shot boundaries. We therefore used the dissolve detection

technique proposed in [7] and tried to detect the shot boundaries. Observation was,

this method was causing over-segmentation. Pixel intensity can change many times

within a shot. Also, within a clip, the variation in background causes change in

pixel intensity from frame to frame. Thus, using only pixel intensity variation in an

observation window as a cue for shot detection proved insufficient.

The experimental setup used for this technique is discussed earlier in section 4.2.1.

The videos we chose for the experiments exhibit various characteristics. The video

Mud Race involves speedily moving objects and also consists of zooming effects. The

48

(a) Bush TV

(b) Art Hand

(c) Mud Race

(d) Iran-UAE

Figure 5.1: Sample videos used for experiments

49

videos Zombie Date, Dissolve MV and Last Time are short films involving focus

switching from one person to another at regular time intervals. The video Hawaii

Flickr is having relatively longer shot durations. Chittorgarh is a presentation involv-

ing still images and very short videos with moving camera. The video Bush TV is a

news report.

0.75 0.8 0.85 0.9 0.95 1
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Recall

P
re

c
is

io
n

Recall−Precision Curve

δ
2

0.99
0.95 0.90

0.85

0.80

0.75

0.70

Figure 5.2: Recall-Precision Curve by varying the value of δ2

For SNDF-merging, we varied the threshold δ2 in the range [0.70, 0.99] and noted

the results to evaluate the performance of our algorithm. The obtained recall-precision

curve is shown in Fig. 5.2. Using a low threshold value (close to 0.70) allowed some

frames, which were not actually a part of shot but at the boundary of the shot, to

be declared as a part of the shot. Therefore, along with frames actually present in

the shot, a few frames not belonging to the shot were also declared to be a part of

shot, causing high recall value but low precision value. Similarly, if a high threshold

value (close to 0.99) is used, the merging SNDFs having similar intensity distribution

50

becomes very strict, causing some frames which are actually a part of the shot to

be missed out from being declared as a part of the shot. Thus, the precision value

increases, but at the same time, the recall value drops. We observed that for most of

the videos, using δ2 = 0.9 had a fair trade-off between the recall and precision values.

Using other values for δ2, either recall or precision rises, but at the same time the

other drops to an unacceptable level. Hence, the value of threshold δ2 has been set to

0.9. Using this value we summarize the performance of our technique in comparison

with using only the dissolve detection method (MTDD) for shot detection in table

5.1.

This technique is designed to detect shot boundaries separated by smooth dissolve

type transitions. If it is used to detect only the abrupt transitions like cuts, then,

since no dissolve type transitions are present, the complete video will be detected

as single SNDF. Therefore, the there will be no refinement by the SNDF histogram

comparison and merging process. Hence, the complete video will be detected as a

single shot.

Videos #Frames MTDD Proposed1
Recall Precision Recall Precision
(%) (%) (%) (%)

Mud Race 15866 75.66 97.15 96.09 97.36
Chittorgarh 7152 88.59 98.97 91.99 98.51
Bush TV 12820 89.91 99.12 96.42 99.01
Zombie Date 9967 96.34 92.02 98.62 91.87
Dissolve MV 7236 88.15 83.49 94.84 83.46
Hawaii Flickr 6430 71.38 97.48 88.34 97.95
Last Time 2050 99.56 80.23 99.81 80.23

Table 5.1: Performance of Dissolve Detection Based proposed technique in terms of Recall and
Precision

For videos having dissolve type transitions, this technique is able to reduce the

misdetection caused due to the original shots being detected as a series of smaller video

sequences (for example, figure 5.3), when using only the dissolve detection method

without SNDF merging (MTDD). Thus, the proposed technique is able to overcome

the problem of over-segmentation. Our experimental results presented in Table 5.1

show that our algorithm is indeed able to reduce the misdetections as compared to

51

Figure 5.3: Experimental video sequence (Hawaii Flickr) with respective frame numbers. Proposed
algorithm detects all these frames to be in a single video shot. Shot boundary detection using only
dissolve detection, identifies the frames 419, 450, 537 & 570 to be in distinct shots, whereas frames
490 & 515 are misdetected.

the technique MTDD. We are able to obtain higher values of recall while maintaining

the precision. The experimental results prove that our proposed technique is indeed

effective.

5.2 Strict Clustering Based Technique

Video shots separated by dissolve type transitions can be effectively detected using

our dissolve detection based proposed technique. For videos having both abrupt and

smooth shot transitions, the shot boundary detector should be able to identify both,

the drastic as well as smooth changes in the visual content. The techniques proposed

in [29] and [30] work well for videos with both, the smooth as well as hard shot

transitions.

In our proposed Strict Clustering based technique we have adopted the use of Sin-

gular Value Decomposition (SVD) for finding content similarity in consecutive frame,

which has been used in both [29] and [30]. The experimental setup is discussed ear-

lier in section 4.2.2. The videos chosen for experiments have various characteristics.

The video Last Time is a short movie involving focus switching from one person to

another at regular time intervals. The videos Snowboarding, Magic Moments, Iran

vs UAE are sports videos involving high action and moving camera. Sr-71 is a short

52

0.9 0.91 0.92 0.93 0.94 0.95 0.96
0.819

0.8195

0.82

0.8205

0.821

0.8215

0.822

0.8225

Recall

P
re

c
is

io
n

Recall−Precision Curve

δ
2

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Figure 5.4: Recall-Precision Curve by varying the value of δ2 (low action videos)

documentary involving moving camera. The videos Tale of Tolerance, Art & Hand-

work, Chittorgarh involve less camera movement and many dissolve type transitions.

The videos On The Move and Indoor were shot and edited for experimental purpose.

These involve both abrupt and smooth shot transitions.

As mentioned earlier, we varied the value of δ2 in the range [0.30, 0.90] and observed

the results. For videos with low action, the obtained recall-precision curve is shown

in figure 5.4. Using lower value of threshold (close to 0.30) proved to be a very loose

criteria to allow merging of clusters having similar intensity distribution. As a result,

clusters having a very small amount of similarity in the intensity distribution were

merged, contributing to higher recall value. This also caused the adjacent clusters

having very small number of frames to be combined into a single cluster having enough

number of frames. These clusters were not discarded in the final step, causing large

53

number of false detections and in turn contributing to smaller value of precision.

Similarly, using a higher value of threshold (close to 0.90) became a too strict criteria

for merging clusters having similar intensity distribution. This caused many similar

clusters (that were actually a part of a single shot) not to be merged together, leading

to lower value of recall. Here, the precision value initially goes on increasing because

the detected locations of the shots become more and more closer to the actual locations

of the shots. Later, the value of threshold drops such that false detections occur,

causing the drop in the value of precision. For most of these videos, the value of

δ2 = 0.60 showed a fair compromise of the recall and precision values. We therefore

set the value of δ2 = 0.60 for such videos.

0.997 0.9975 0.998 0.9985 0.999 0.9995
0.9762

0.9763

0.9764

0.9765

0.9766

0.9767

0.9768

0.9769

0.977

0.9771

Recall

P
re

c
is

io
n

Recall−Precision Curve

δ
2

0.65

0.550.60

0.450.50

0.35

0.30

0.40

Figure 5.5: Recall-Precision Curve by varying the value of δ2 (high action videos)

However, for videos involving high action, a lower value of δ2 was required, because,

the change in the intensity distribution for such videos would be large in consecutive

54

frames, and setting higher threshold for comparison would lead to misdetections.

Here, in the lower range of values [0.30, 0.65], we observe that as the threshold goes

on decreasing, the value of recall goes on increasing allowing merger of similar clusters.

We observed the variation in recall-precision values for a number of videos by varying

the threshold δ2. The value δ2 = 0.4 was found to be optimal to maximize both recall

and precision. The obtained curve using various values of δ2 for such a video is shown

in figure 5.5.

(a)

Videos #Frames Proposed2 OSBD VSS-SVD
Recall Precision Recall Recall Precision Precision
(%) (%) (%) (%) (%) (%)

Tolerance 11685 100 75.75 100 75.59 99.97 75.21
Chittorgarh 7152 100 94.03 100 94.01 100 93.81
Art-Hand 2232 100 81.68 99.32 81.35 100 80.42
Last Time 2050 100 78.43 100 77.93 100 77.32
Indoor 1244 91.91 92.52 93.27 94.01 92.52 93.81

(b)

Videos #Frames Proposed2 OSBD VSS-SVD
Recall Precision Recall Recall Precision Precision
(%) (%) (%) (%) (%) (%)

Magic Mts 8105 94.56 81.92 91.59 82.52 92.23 82.52
Sr-71 13842 99.89 97.70 99.22 97.70 99.72 99.74
Iran-UAE 8586 99.92 97.52 99.57 97.51 99.67 97.52
On move 8495 99.82 99.28 99.63 99.26 99.22 99.28
Snowboard 18736 99.88 97.80 99.63 97.97 99.01 97.78

Table 5.2: Performance of Strict Clustering Based proposed technique in terms of Recall and Preci-
sion. (a) Low action videos (δ2 = 0.60), (b) High action videos (δ2 = 0.40)

Our proposed technique is based on singular value decomposition (SVD) of the

matrix formed using the three-dimensional histogram feature. The computation time

for an SVD of a m× n matrix A assuming that m >> n as given in [38] is,

• Computation of U, V and D : 4m2n+ 8mn2 + 9n3

• Computation of V and D : 4mn2 + 8n3

The technique used in [29] considers all the video frames to form the matrix A.

Therefore, as the number of frames in the video increase, the computation time of

55

Videos #Frames Avg. approx. time taken (min)
Proposed2 OSBD VSS-SVD

Snowboard 18736 32 45 94
Tolerance 11685 19 26 46
On move 8495 18 37 145
Chittorgarh 7152 8 10 10
Art-Hand 2232 3 4 7
Last Time 2050 3 4 7
Indoor 1244 2.5 5.5 21.5
Sr-71 13842 13 15 10
Iran-UAE 8586 9 11 7
Magic Mts 8105 10 9.5 5

Table 5.3: Execution time of different techniques for various videos

the SVD increases exponentially. The size of matrix A in our proposed algorithm

is controlled by Nstep. By setting Nstep = 2, the dimension of matrix A is reduced

to m× 2 from m× n, where n is the number of frames in the video. Thus, the

computation time of calculating the SVD is reduced to,

• Computation of U, V and D : 8m2 + 32m+ 72 ≡ O(m2)

• Computation of V and D : 16m+ 64 ≡ O(m)

We then need to compute the SVD (n/Nstep) times i.e. (n/2) times. Thus the com-

plexity of clustering the frames becomes O(mn), which will reduce the computation

time significantly.

From table 5.2 it is clear that our proposed technique is able to perform as effec-

tively as the techniques OSBD [30] and VSS-SVD [29], with slightly higher recall and

precision values in some cases. Moreover, from table 5.3 we can clearly see that our

technique runs significantly faster than OSBD and VSS-SVD which justifies the com-

putational time calculated above. Thus, our proposed technique in indeed efficient.

56

Chapter 6

Conclusion And Future Work

Video shot detection is in important step in the video indexing, retrieval and sum-

marization applications. This report presents two novel techniques for video shot

detection based on (a) dissolve detection and (b) strict initial clustering of the video

frames, both using singular value decomposition. The conclusion and future scope of

our work is as follows.

6.1 Conclusion

Video shot detection can be done by modelling and detecting the shot transitions.

The abrupt transitions are easy to detect as the visual discontinuity can be clearly

observed. Smooth transitions are however difficult to detect as the change in visual

contents of the frames in such transitions is very small. Identifying shot boundaries

by detecting the dissolve type shot transitions only results in over-segmentation of

the video causing large number of smaller video sequences (most of these belonging

to the same shot) to be detected as individual shots. Our first approach is able to

overcome the problem of over-segmentation by comparing the histograms and merg-

ing the respective sequences of non dissolve frames. By this we are able to achieve

improved performance in terms of recall values while maintaining the precision.

This technique works well with videos having most shot transitions of dissolve

type. For videos having many abrupt shot transitions, this technique will not have

57

any dissolve transitions to detect. Therefore, such videos will be detected as single

shot. Our second proposed technique based on strict initial clustering is able to

detect the shots having both abrupt as well as smooth transitions, where, we strictly

combined only almost identical and consecutive frames in a single cluster, so that the

abrupt changes in visual flow get detected initially. Later, we iteratively calculate and

compare the three-dimensional histograms of these clusters so as to merge the similar

clusters. By controlling the size of each cluster, we are able to control the size of

the feature matrix which helps in significantly reducing the execution time when the

video consists of large number of frames. The results show our technique is efficient

and runs faster in comparison with other techniques.

6.2 Future Work

Videos can be classified into various categories based on the environment and context.

Developing a common shot detection system for all the categories is very difficult as

each will be having a distinct property. In the dissolve detection based technique we

narrowed down to only videos having the dissolve type shot transitions. Our strict

clustering based technique works well for videos having both abrupt as well as smooth

shot transitions. In the dissolve detection based technique, applying strict clustering

on the initially detected sequences of non-dissolve frames (SNDFs), we will be able to

separate the consecutive frames having abrupt change in content. In future, this can

be adopted to make our dissolve detection based technique more robust for videos also

having abrupt shot transitions along with dissolve type transitions. We have used the

histogram feature for frame content comparison. Other global features of the frames

or group of frames can be used depending on the application under consideration.

The features extracted for the MPEG-7 descriptions can be also used as these will

also be used by the indexing, summarization and retrieval applications.

58

Our Publications

1. M. G. Padalkar and M. A. Zaveri, “Dissolve Detection Based Shot Identification

Using Singular Value Decomposition,” in 2010 Fourth Asia International Confer-

ence on Mathematical/Analytical Modelling and Computer Simulation (AMS2010),

Kota Kinabalu (Malaysia), May 2010, pp. 312-316. (Presented)

59

Bibliography

[1] H. Zhang and J. H. Smoliar, Stephen W.and Wu, “Content-based video browsing

tools,” in Proc. SPIE, Multimedia Computing and Networking, vol. 2417, 1995,

pp. 389–398.

[2] P. Bouthemy, C. Garcia, R. Ronfard, G. Tziritas, E. Veneau, and D. Zugaj,

“Scene segmentation and image feature extraction for video indexing and re-

trieval,” in VISUAL ’99: Proceedings of the Third International Conference on

Visual Information and Information Systems, 1999, pp. 245–252.

[3] A. Doulamis, N. Doulamis, and S. Kollias, “A fuzzy video content representation

for video summarization and content-based retrieval,” SP, vol. 80, no. 6, pp.

1049–1067, June 2000.

[4] X. Mu, “A content-based video browsing system based on visual neighbor simi-

larity,” in JCDL ’06: Proceedings of the 6th ACM/IEEE-CS joint conference on

Digital libraries, 2006, pp. 373–373.

[5] U. Gargi, R. Kasturi, and S. Strayer, “Performance characterization of video-

shot-change detection methods,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 10, no. 1, pp. 1 –13, feb 2000.

[6] C. Cotsaces, N. Nikolaidis, and I. Pitas, “Video shot detection and condensed

representation. a review,” Signal Processing Magazine, IEEE, vol. 23, no. 2, pp.

28 –37, march 2006.

60

[7] C.-W. Su, H.-Y. Liao, H.-R. Tyan, K.-C. Fan, and L.-H. Chen, “A motion-

tolerant dissolve detection algorithm,” Multimedia, IEEE Transactions on, vol. 7,

no. 6, pp. 1106 – 1113, dec. 2005.

[8] A. Hanjalic, “Shot-boundary detection: unraveled and resolved?” CirSysVideo,

vol. 12, no. 2, pp. 90–105, February 2002.

[9] T. Sikora, “The mpeg-7 visual standard for content description-an overview,”

CirSysVideo, vol. 11, no. 6, pp. 696–702, June 2001.

[10] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-

man, “Indexing by latent semantic analysis,” Journal of the American Society of

Information Science, vol. 41, no. 6, pp. 391–407, 1990.

[11] A. Hanjalic, Content-Based Analysis of Digital Video, 1st ed. Springer, July

2004.

[12] R. Lienhart, “Comparison of automatic shot boundary detection algorithms,” in

Storage and Retrieval for Image and Video Databases, no. SPIE 3656, January

1999, pp. 290–301.

[13] J. Boreczky and L. Rowe, “Comparison of video shot boundary detection tech-

niques,” JEI, vol. 5, no. 2, pp. 122–128, April 1996.

[14] H. Jiang, A. Helal, A. K. Elmagarmid, and A. Joshi, “Scene change detection

techniques for video database systems,” Multimedia Syst., vol. 6, no. 3, pp. 186–

195, 1998.

[15] C. O’Toole, A. F. Smeaton, N. Murphy, and S. Marlow., “Evaluation of automatic

shot boundary detection on a large video test suite,” in CIR’99 - The Challenge

of Image Retrieval: 2nd UK Conference on Image Retrieval, 1999, pp. 1–12.

[16] A. Pardo, “Simple and robust hard cut detection using interframe differences,”

in CIARP, 2005, pp. 409–419.

61

[17] O. Urhan, M. K. Güllü, and S. Ertürk, “Modified phase-correlation based robust

hard-cut detection with application to archive film,” IEEE Trans. Circuits Syst.

Video Techn., vol. 16, no. 6, pp. 753–770, 2006.

[18] S. M. M. Tahaghoghi, H. E. Williams, J. A. Thom, and T. Volkmer, “Video cut

detection using frame windows,” in ACSC ’05: Proceedings of the Twenty-eighth

Australasian conference on Computer Science, 2005, pp. 193–199.

[19] S. Porter, M. Mirmehdi, and B. Thomas, “Video cut detection using frequency

domain correlation,” Pattern Recognition, International Conference on, vol. 3, p.

3413, 2000.

[20] O. D. Robles, P. Toharia, A. Rodrguez, and L. Pastor, “Automatic video cut de-

tection using adaptive thresholds,” in Proceedings of the Fourth IASTED Inter-

national Conference on Visualization, Imaging and Image Processing, sep 2004,

pp. 517–522.

[21] T. Barbu, “Novel automatic video cut detection technique using gabor filtering,”

Comput. Electr. Eng., vol. 35, no. 5, pp. 712–721, 2009.

[22] R. Dugad, K. Ratakonda, and N. Ahuja, “Robust video shot change detection,”

in Multimedia Signal Processing, 1998 IEEE Second Workshop on, 7-9 1998, pp.

376 –381.

[23] Z. Cernekova, C. Nikou, and I. Pitas, “Shot detection in video sequences using

entropy based metrics,” in Image Processing. 2002. Proceedings. 2002 Interna-

tional Conference on, vol. 3, june 2002, pp. III–421 – III–424 vol.3.

[24] M. L. Cooper and J. Foote, “Scene boundary detection via video self-similarity

analysis,” in ICIP (3), 2001, pp. 378–381.

[25] M. Cooper, J. Foote, J. Adcock, and S. Casi, “Shot boundary detection via

similarity analysis,” in in Proceedings of the TRECVID 2003 Workshop, 2003,

pp. 79–84.

62

[26] Y. Ohta, T. Kanade, and T. Sakai, “Color information for region segmentation,”

Computer Graphics and Image Processing, vol. 13, no. 1, pp. 222 – 241, July

1980.

[27] I. Radev, G. Paschos, N. Pissinou, and K. Makki, “Video content representa-

tion based on texture and lighting,” in VISUAL ’00: Proceedings of the 4th

International Conference on Advances in Visual Information Systems, 2000, pp.

457–466.

[28] W. Zhao, J. Wang, D. Bhat, K. Sakiewicz, N. Nandhakumar, and W. Chang,

“Improving color based video shot detection,” in ICMCS ’99: Proceedings of the

IEEE International Conference on Multimedia Computing and Systems, 1999, p.

752.

[29] Z. Cernekova, C. Kotropoulos, and I. Pitas, “Video shot segmentation using

singular value decomposition,” in Multimedia and Expo, 2003. ICME ’03. Pro-

ceedings. 2003 International Conference on, vol. 2, july 2003, pp. II – 301–4

vol.2.

[30] W. Abd-Almageed, “Online, simultaneous shot boundary detection and key

frame extraction for sports videos using rank tracing,” in Image Processing, 2008.

ICIP 2008. 15th IEEE International Conference on, oct. 2008, pp. 3200 –3203.

[31] M. Tian, S.-W. Luo, and L.-Z. Liao, “An investigation into using singular value

decomposition as a method of image compression,” in Machine Learning and

Cybernetics, 2005. Proceedings of 2005 International Conference on, vol. 8, 18-

21 2005, pp. 5200 –5204.

[32] “MathWorks Matlab.” [Online]. Available: http://www.mathworks.com/

[33] “videoIO Toolbox for Matlab,” 2010. [Online]. Available:

http://sourceforge.net/projects/videoio/

63

[34] N. Manickam, A. Parnami, and S. Chandran, “Reducing false positives in video

shot detection using learning techniques,” in Indian Conference on Computer

Vision, Graphics and Image Processing, vol. 4338, 2006, pp. 421–432.

[35] “Precision and Recall,” 2010. [Online]. Available:

http://en.wikipedia.org/wiki/Precision and recall

[36] “YouTube - Broadcast Yourself,” 2009. [Online]. Available:

http://www.youtube.com/

[37] “Kino Video Editor,” 2009. [Online]. Available: http://www.kinodv.org/

[38] “Singular Value Decomposition,” 2008. [Online]. Available:

http://campar.in.tum.de/twiki/pub/Chair/TeachingWs05ComputerVision/

3DCV svd 000.pdf

64

