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Abstract The need for preservation of cultural her-

itage has desiderated research on digitally repairing the

photographs of damaged monuments. In this paper, we

first propose a technique for automatically detecting

the cracked regions in photographs of monuments. Un-

like the usual practice of manually selecting the mask

for inpainting, the detected regions are supplied to an

inpainting algorithm. Thus, the process of digitally re-

pairing the cracked regions that physical objects have,

using inpainting, is completely automated. The detec-

tion of cracked regions is based on comparison of patches,

for which we use a measure derived from the edit dis-

tance, which is a popular string metric used in the area

of text mining. Further, we extend this method to per-

form inpainting of video frames by making use of the

scale-invariant feature transform and homography. We

consider the camera to move while capturing video of

the heritage site, as such videos are typically captured

by novices, hobbyists and tourists. Finally, we also pro-

pose a video quality measure to quantify the temporal

consistency of the inpainted video. Experiments have

been carried out on videos captured from the heritage

site at Hampi, India.
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1 Introduction

Historic monuments and heritage sites across the world

are important sources of knowledge, depicting the evo-

lution of mankind. These are not only irreplaceable as-

sets that signify the culture and civilization of the past,

but also masterpieces of accomplishments that symbol-

ize the human potential. It is for this reason that glob-

ally many organizations have taken up the initiative

to safeguard and preserve the heritage sites. Over the

centuries, the heritage sites have witnessed a number

of natural calamities and sabotage, resulting in their

present ruined condition. Access to many such heritage

sites is restricted, fearing the risk of further damage

by visitors. One may think of physically renovating the

heritage sites to preserve them. However, the renova-

tion may not only pose danger to the undamaged monu-

ments, but may also fail to mimic the skilful work of his-

tory. It would be interesting to have a heritage site re-

constructed digitally, as such a process avoids physical

contact to the monuments. The digitally reconstructed

heritage site may then provide an unrestricted access

for viewing the monuments in their entirety. Also, in to-

day’s world, preservation of the digitally reconstructed

monuments would be inexpensive.

Digital reconstruction requires repairing of the dam-

aged regions in a plausible manner. This task can be

achieved using various inpainting techniques [4], [9],

[10], [33]. Given an image and a region of interest in

it, the task of an inpainting process is to fill up the pix-

els in this region, in such a way that either the original

content is restored or the region is visually plausible in
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(a) (b) (c)

Fig. 1 Auto-inpainting cracked regions. (a) Original image of a heritage scene. (b) Automatically detected cracked region
using the proposed method is shown in red color. (c) Image obtained after inpainting the detected region.

the context of the image. Digital restoration of the dam-

aged regions in given images thus consists of two steps

viz. (a) selection/detection of the regions to be mod-

ified and (b) applying a suitable inpainting algorithm

on these regions.

The process of selecting the regions to be inpainted

is usually subjective. One user may want some region of

the image to be modified, while another user may want

to modify another region in the same image. Hence,

for an inpainting algorithm, the regions to be inpainted

are usually selected manually. However, when looking

at heritage monuments, there is a consensus about the

desire to view these in their undamaged form. In partic-

ular, the damage involving cracked regions diminishes

the attractiveness of the monuments and one would

crave these to be seamlessly eliminated. One such ex-

ample is illustrated in figure 1.

The result of an inpainting algorithm is sensitive to

the selection of the region to be modified. The exact se-

lected area may vary for different users if the selection

of cracked regions in photographs of monuments is done

manually. Therefore, apart from being subjective, the

process of selecting the cracked regions is also an ener-

vating task. This necessitates an exploration for a tech-

nique that can automatically detect the cracked regions

in images of monuments, which is a critical and chal-

lenging problem for the success of digital reconstruction

of heritage sites [11], [12], [19]. An automatic detection

of cracked regions also proves useful in reconstruction

and repair of digitized 3D models. One can use these

digitized 3D models for creating walk-through applica-

tions [3], [20], [40]. Furthermore, automatic detection

of cracked regions will facilitate inpainting to be per-

formed on-the-fly for creating efficient immersive navi-

gation/digital walk-through systems.

This paper contributes by proposing a novel tech-

nique to auto-inpaint photographs of damaged historic

monuments and its extension to inpaint videos. Note

that the application is to actually restore a heritage

scene, i.e., digitally repair cracks that physical objects

have. Thus we are not talking about image restoration,

but about object completion. In other words, unlike

the techniques that detect an external damage or de-

fect due to alteration of a photograph, the proposed

method aims to detect and inpaint the cracked regions

in the photographed scenes/objects. The cracks could

be developed over a period of time due to environmen-

tal effects or due to manual destruction. The paper also

proposes a video quality metric to measure the tempo-

ral consistency of the inpainted video.

The detection of cracked regions uses similarity of

non-overlapping adjacent patches as a cue. In videos,

the cracked regions detected in a frame are inpainted

and then tracked across subsequent frames for main-

taining the visual continuity. Videos of heritage scenes

captured with a moving camera by novices, hobbyists

and tourists usually contain rigid objects. In such a sit-

uation, to track the detected cracked regions in sub-

sequent frames, we use homography [17] estimated by

matching scale invariant feature transform (SIFT) key-

points [23].

The rest of the paper is organized as follows: Lit-

erature review is presented in section 2. Our proposed

technique for detecting cracked regions is discussed in

detail in section 3 and its extension to inpaint videos is

described in section 4. The proposed temporal consis-

tency measure is given in section 5. The experimental

setup and the reported results are given in section 6,

followed by conclusion in section 7.

2 Literature Review

Over the past two decades, image inpainting has been

an active area of research. Techniques based on con-

necting level lines [4], [16], [26], [28], [45], [47], exem-

plar based methods [9], [10], methods based on image

gradients [33], probabilistic structure estimation [39],

methods using depth and focus [27], etc. have been in-
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fluential. However, these methods are semi-automatic,

i.e. the regions to be inpainted are required to be man-

ually selected by the users.

The literature reports only a few inpainting tech-

niques that also facilitate the automatic detection of

the regions to be inpainted [1], [7], [42]. Chang et al. [7]

proposed a method to detect damage in images due to

colour ink spray and scratch drawing. Their method is

based on the use of several filters and structural infor-

mation of damages. Tamaki et al. [42] address the detec-

tion of visually less important string-like objects that

block user’s view of a discernible scene. Their method,

however, is restricted to the detection of only those oc-

cluding objects that are long and narrow and highly

contrasted in intensity with respect to the background.

Amano [1] presents a correlation-based method for de-

tecting defects in images. This method relies on cor-

relation between adjacent patches for detection of de-

fects i.e. small number of regions disobeying an “image

description rule”, complied by most local regions. The

method works well for detecting computer-generated

superimposed characters having uniform pattern.

All the above mentioned techniques are suitable for

detecting actual damage or alteration caused to a pho-

tograph. These techniques do not address the identifi-

cation of damage to the objects or scenes that are pho-

tographed. In this direction Parmar et al. [31] proposed

a technique which uses matching of edge-based features

with pre-existing templates to distinguish vandalized

and non-vandalized regions in frontal face images of

monuments at heritage sites. However, their inpainting

results are highly dependent on the selected templates

and their method is restricted to frontal face images

of monuments. The template creation of both vandal-

ized and non-vandalized regions may not be practically

realizable for such images and therefore the detection

process may lead to undesired results. Another method

to identify and inpaint the defaced regions in statues

is proposed in [29]. The method matches templates by

comparing the texton features and is again limited to

frontal faces. Turakhia et al. [43] proposed a method

to automatically inpaint cracks in images of heritage

monuments. Their method relies on edge detection and

tensor voting to detect cracks.

The technique proposed in [30] compares overlap-

ping adjacent patches for similarity. The patches are

compared in the singular value decomposition (SVD)

domain and use an image-dependent threshold to iden-

tify cracked regions. However, overlapping patches make

redundant comparisons due to which implementation

slows down. Recently, Cornelis et al. [8] have proposed a

method for virtual restoration of paintings. The method

is flexible as the user may set parameters to suit the in-

put. However, it is suitable only for the detection of fine

cracks that appear on paintings.

Techniques for micro-crack detection in concrete can

be found in [2], [34], but one may note that these re-

quire special imaging conditions. The actual surface is

polished, impregnated with a special dye and then pho-

tographed using microscope. In this way defects of ma-

terial including micro-cracks, transition zones, porous

areas and air-bubbles are highlighted, generating a high

contrast image. A method for crack detection in pave-

ment images using tensor voting can be found in the

work by Zou et al. [48]. The performance of their tech-

nique is heavily dependent on the accuracy of genera-

tion of crack-pixel binary map that acts as an input to

the tensor voting framework.

For inpainting in videos, a method has been pro-

posed by Patwardhan et al. [32]. Their technique con-

siders a static background with a moving foreground,

any of which could fall under the region to be inpainted.

First, the occluded foreground patches are filled up us-

ing motion-inpainting. The background patches which

are visible in other frames are then directly copied. Fi-

nally, any missing region is filled up using the exemplar-

based inpainting approach [10]. It may be noted that,

in this approach the users need to manually specify the

objects or regions that are to be inpainted. Also, many

constraints are placed on the camera motion.

3 Proposed approach for detection of cracked

regions

Visual discontinuities like damaged regions in a pho-

tographed scene/object attract attention of the human

visual system. The cracked areas are the breaks split-

ting the objects which were developed over a period of

time due to natural calamities or manual destruction.

Inpainting these shall improve the visual appearance

and enable one to view the photographed scene/object

in an undamaged form. Here, we propose a novel tech-

nique for automatically detecting such cracked regions.

Cracks are typically characterised by dark areas in

an image. These can be easily identified by human be-

ings but pose difficulty to computers. In trivial cases,

simple thresholding is sufficient for detecting the cracks.

However, in general, the subtle variation in pixel inten-

sities makes it challenging to detect the cracked regions.

In what follows, we describe a method for crack detec-

tion by enhancing the dark regions and comparing non-

overlapping patches. The patches are compared using a

distance measure inspired from the edit distance [44]

which is successfully used in the area of text mining for

comparing strings. The distance measure is such that
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Fig. 2 Proposed approach for detecting the cracked regions.

(a) Input (b) Detection

Fig. 3 Proposed detection of cracked regions. The detected
regions are shown in red color.

it avoids penalizing trifle differences between the cor-

responding pixels of the compared patches. The patch

penalty along with average edge strength within the

patches is used to detect the cracked regions. The pro-

posed method is shown in figure 2 and the steps in-

volved are described as follows.

3.1 Preprocessing

Consider a normalized intensity image I0 of sizeM ×N .

Since the cracked regions are dark, low-intensity pixels

are more likely to be part of a crack. A weight ma-

trix Iw is constructed such that dark pixels have higher

weights, given by,

Iw(x, y) = exp(−I0(x, y)), (1)

where (x, y) denote the pixel coordinates. The weights

in Iw are multiplied to the corresponding pixels in I0
and the resulting image is eroded to obtain Iv. The

erosion operation is performed so that the narrow dark

regions grow sizeably for proper detection, which may

otherwise remain undetected during further processing.

The results of preprocessing on the input image shown

in figure 3(a) are depicted in figure 4.

(a) I0 (b) Iw

(c) I0 ∗ Iw (d) Iv

Fig. 4 Preprocessing of the input image shown in figure 3(a).

3.2 Comparing patches using tolerant edit distance

Since the cracked regions exhibit noticeable dissimilar-

ity with respect to the neighbouring regions, we in-

tend to mark them out by comparing adjacent non-

overlapping patches in the image Iv. A simple method

for comparison is to calculate sum of absolute difference

or sum of squared difference (SSD) across correspond-

ing pixels of the compared patches. These measures are,

however, sensitive to noise and may give a high error

even for visually similar patches, which is evident in fig-

ure 5. Moreover, comparing a patch with its spatially

shifted version also gives high error, where in fact both

are visually identical. Thus, it becomes difficult to sepa-
rate the cracks from the surroundings using a threshold.

In string matching, shifting errors are overcome us-

ing the edit distance [44]. Edit distance is a string met-

ric that gives the count of operations required for trans-

forming one string into another. The transformation is

achieved by comparing the characters of first string with

that of the second string and performing an appropri-

ate operation. Here, the valid operations on comparing

a pair of characters are insertion, deletion and substi-

tution. For example, consider two strings “books” and

“loops”. Here only two operations, both substitutions

viz. “b” to “l” and “k” to “p” are required for the trans-

formation. Hence the edit distance between “books”

and “loops” is 2. Likewise, for transforming “books”

to “oops” we again require two operations, a deletion

and a substitution, giving an edit distance equal to 2.

Now, in order to compare patches, consider the lexi-

cographical ordering of two patches synonymous to two

strings and each pixels synonymous to characters of the

respective strings. If we calculate the edit distance, it
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(a) (b)

(c)

Fig. 5 Comparison of (a) sum of absolute difference image,
(b) sum of squared difference image and (c) tolerant edit dis-
tance image ItED for tolerance δt = 10. Patch size is 3× 3.
With the input image of size 684× 912 we have ItED of size
227× 303. Here, an enlarged, intensity inverted version is
shown for clarity.

would give the number of operations required to trans-

form one patch to another. A smaller value of edit dis-

tance conveys less number of operations and in turn

higher similarity of the patches. However, in the pres-

ence of noise, the edit distance will still be higher. This

is because the substitution operation penalizes the mis-

match of compared characters.

In order to overcome the noise sensitivity of edit dis-

tance, a tolerance can be used for the substitution oper-

ation. In other words, if the difference between the com-
pared characters falls within some tolerance value, the

characters can be considered as equivalent and, there-

fore, no penalty is given by the substitution operation.

We call the edit distance with such a substitution op-

eration as tolerant edit distance (tED). The tED thus

gives a measure of similarity between patches, in the

presence of noise and spatial shift.

Consider patches of size m× n. Then, patch Φp at

pixel p with coordinates (x, y) in the image Iv, con-

sists of pixels with coordinates (X,Y ), such thatX = x,

. . . , x+m− 1 and Y = y, . . . , y + n− 1. For patch Φp,

the right and bottom non-overlapping adjacent patches

are Φr and Φs at pixels r = (x, y + n) and s = (x+m, y),

respectively. Let the pixels of patches Φp, Φr and Φs be

rearranged using lexicographical ordering to form vec-

tors vp, vr and vs, respectively. We then calculate the

tED between the pairs vp, vr and vp, vs, the average of

which is assigned to patch Φp. The tED is calculated

using the edit distance calculation method described in

Algorithm 1 Calculation of tED

% For vectors v1 and v2 with lengths |v1| and |v2|, respec-
tively and δt as tolerance value,

% Initialization
D[0, 0] := 0
for i := 1 to |v1| do D[i, 0] := i end for

for j := 1 to |v2| do D[0, j] := j end for

% Required operation: substition, insertion or deletion
for i := 1 to |v1| do

for j := 1 to |v2| do
m1 := D[i− 1, j − 1] + C(v1[i], v2[j], δt)
m2 := D[i− 1, j] + 1
m3 := D[i, j − 1] + 1
D[i, j] = min(m1,m2,m3)

end for
end for

% Result
return tED := D[|v1|, |v2|]

% Comparison function: C(v1[i], v2[j], δt)
if |v1[i]− v2[j]| ≤ δt then

C(v1[i], v2[j], δt) := 0
else

C(v1[i], v2[j], δt) := 1
end if

[44], along with a tolerance value1 δt, as given in algo-

rithm 1. The tED is calculated for all the patches for

which there exist both left and bottom non-overlapping

adjacent patches. The calculated tED values are used to

form an image ItED. The image ItED when multiplied

with an edge strength image makes it easier to detect

the cracked regions. Figure 5(c) shows the image ItED

corresponding to image Iv depicted in figure 4(d).

3.3 Edge strength calculation

Since the cracked regions are distinct from their neigh-

bouring regions, these exhibit higher edge strengths.

In order to give preference to patches having higher

edge strength, we now calculate the normalized gradi-

ent magnitude of every pixel in the image Iv. Let Ig
represent the image consisting of normalized gradient

magnitudes. The gradient magnitude along the bound-

ary of the cracked regions may vary and therefore the

pixels of a cracked region may not have a unique edge

strength. In order to assign a unique edge strength to

each cracked region, we intend to identify the regions

disconnected by weak gradient magnitudes.

The boundary of the cracked region within a small

(say 3× 3) patch would be similar to a horizontal, ver-

tical, diagonal or anti-diagonal line. Since the gradient

1 The Details of selecting a suitable tolerance value δt are
given in section 6.
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0 0 0
1 1 1
0 0 0

(a)

1 0 0
0 1 0
0 0 1

(b)

0 1 0
0 1 0
0 1 0

(c)

0 0 1
0 1 0
1 0 0

(d)

Fig. 6 Line filters. (a) Horizontal, (b) main diagonal, (c) ver-
tical and (d) anti-diagonal.

of the boundary could vary, within this small patch the

pixels which are part of a horizontal, vertical, diagonal

or anti-diagonal line can be detected using the corre-

sponding line filters. To achieve this, we use a set of

four 3× 3 line filters shown in figure 6. By convolving

the image Ig with these filters, the maximum response

at each pixel is recorded to create an image Im.

In all our experiments we observed that the pix-

els around the boundary of the cracked regions have

a low non-zero response to the line filter. Because of

this, the disjoint cracked regions get connected while

performing unique edge strength assignment. To avoid

such a situation, the filter responses having lower values

are required to be discarded using an image dependent

threshold. Since the response to line filters is not ex-

pected to vary significantly for pixels in the cracked

regions, a threshold with respect to the maximum re-

sponse can be used. Setting the threshold to 0.1 times

the maximum response was found appropriate for dis-

carding the low non-zero responses which were respon-

sible for connecting the disjoint cracked regions. The

image Im is thus refined by discarding the low responses

as follows.

Im(x, y) =

{
0, if Im(x, y) < 0.1 ∗max(Im),

Im(x, y), otherwise.
(2)

The image Im is morphologically closed using a 3× 3

structuring element and the connected components are

detected. The gradient magnitude image Ig is now up-

dated such that the highest gradient magnitude within

each connected component is assigned to all the pix-

els within the respective component. Updating Ig in

this manner enables us to assign a unique edge strength

value to distinct components. The edge strength image

Ie is now constructed by taking the normalized sum of

Ig and Iw.

As mentioned earlier, the image ItED when multi-

plied with the edge strength image Ie makes it easier

to detect the cracked regions. Therefore, to every patch

Φp for which tED is calculated, the average of edge

strengths of all the pixels within the patch Φp, and its

neighbours Φr and Φs, is calculated and assigned as the

edge strength. We now multiply these edge strengths

with the corresponding tED to form the weighted tED

image Itw shown in figure 7(e).

(a) Initial Ig (b) Refined and closed Im

(c) Updated Ig (d) Ie

(e) Itw

Fig. 7 Edge strength Ie and weighted tolerant edit distance
images Itw. Sizes of Ig , Im and Ie are the same as that of I0,
while Itw and ItED are of the same size. Here, enlarged and
intensity inverted version of Itw is shown for clarity.

3.4 Thresholding

By multiplying the tED image ItED with the edge strength
image Ie, we ensure that only strong crack-boundaries

are retained. Since the tED image ItED has higher val-

ues at the boundary of the cracked regions, the same

holds true for the weighted tED image Itw. In order

to fill the gap between the boundaries, a morpholog-

ical closing operation is applied on Itw, with the size

of the structuring element depending on the size of Iv.

The morphologically closed image Itw is now multiplied

with the resized version of the weight matrix Iw to ob-

tain an intermediate image Iwc.

In order to assign unique values to different objects

for segmentation in image Iwc, we employ the method

used for updating the gradient magnitude image Ig in

the previous section 3.3. Thus, by convolving the inter-

mediate image Iwc with the line filters shown in figure 6,

thresholding the maximum response image using equa-

tion (2) and finally applying the morphological closing

operation, we obtain the image Ic, in which the con-

nected components have unique values. The image Ic
obtained here is shown in figure 8(a).
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(a) Ic (b) I1

Fig. 8 Initial detection. Image Ic is thresholded and mapped
to Iv to obtain I1. Size of Ic is same as that of ItED, while I1
and Iv are of the same size. Here, enlarged, intensity inverted
version of Ic is shown for clarity.

Higher the value of a region in Ic, more likely it is

to be a crack. Thus, the regions with values lower than

a threshold T need to be discarded. Let the V denote

the array consisting of k unique values in Ic arranged in

ascending order. Then, inspired by the threshold selec-

tion method for matching SIFT features given in [23],

we estimate the threshold T based on Ic as given below

in algorithm 2.

Algorithm 2 Selection of threshold T

% Initialize
T := V [k]

% Update
for i := k − 1 to 1 do

if V [i] < 0.2 then

break
end if

if ( V [i]
V [i+1]

) ≥ (V [i−1]
V [i]

) then

T := V [i]
end if

end for

% Result
return T

Once T is calculated, the image Ic is thresholded

using the following equation (3).

Ic(x, y) =

{
1, if Ic(x, y) ≥ T,
0, otherwise.

(3)

The thresholding operation is followed by morpho-

logical closing to fill in gaps between nearby disjoint

regions. Note that binary image Ic of size (M
m − 1)×

(N
n − 1) is obtained by operating on m× n sized non-

overelapping patches in the grayscale image Iv of size

M ×N . Here, the patches located at (A,B), (A,B + n)

and (A+m,B) in the image Iv are used to obtain the

value at pixel (a, b) in the binary image Ic, such that

A = (a− 1) ∗m+ 1, . . . , a ∗m andB = (b− 1) ∗ n+ 1,

. . . , b ∗ n. Since we need the output binary image to

(a) If (b) If overlapped on input im-
age

(c) Inpainted image

Fig. 9 Refined detection. (a) Final detection binary image
If , (b) detected regions overlapped on the input image, (c)
inpainted result.

have the same size as that of the input grayscale image

Iv, we need an inverse mapping from pixels in Ic to cor-

responding patches in Iv. For this purpose, consider an

image I1 having size same as that of Iv i.e. M ×N . The

inverse mapping is now obtained by copying the values

from location (a, b) in the binary image Ic to locations

(A,B), (A,B + n) and (A+m,B) in I1. This inverse

mapping is performed for all pixels in Ic to correspond-

ing patches in I1 which is of the same size as that of

Iv.

A second morphological closing operation is now ap-

plied on the binary image I1 in order to avoid splitting

of the detected region after the inverse mapping. The

resulting initial detection binary image I1 is shown in

figure 8(b). This gives a good estimate of the cracked re-

gions. However, few pixels of the cracked regions which

are similar to the surroundings may still remain un-

detected. Therefore, a refinement step is required to

achieve a more accurate detection.

3.5 Refinement

The method described above relies on patch-based com-

parison. Therefore, the initial detection binary image I1
localizes the cracked regions. In order to perform a more

accurate detection at pixel level, sophisticated tech-

niques are required such that a binary segmentation-

based refinement around the initially detected regions

can be performed. Interactive image segmentation tech-

niques based on curve evolution, graph-cut optimiza-

tion have been widely used for accurately detecting
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roughly marked objects. The active contour method [6]

and grab-cut technique [35] require the user to man-

ually select a region around the object of interest. By

optimizing an energy function, the selection is refined

to fit the object boundary.

The initially detected binary image I1, which is de-

tected automatically without any user interaction, can

be used as input to the above mentioned interactive

segmentation techniques. For refining I1, we use the

method based on active contours,2 proposed in [6] to

obtain the final detection binary image If . Figure 9(a)

shows the final detection binary image If obtained on

refining I1. The detected regions overlapped on the in-

put image are shown in figure 9(b). In order to justify

the suitability of the proposed method for inpainting,

we show the inpainted result in figure 9(c). For inpaint-

ing, we have used the method proposed in [10].

4 Proposed approach for auto-inpainting in

videos

In order to extend the proposed crack detection method

for auto-inpainting in videos, it would be intuitive to

think of performing frame-by-frame detection and in-

painting. This abstraction, however, in practice is a

long-drawn-out process as it does not exploit the inter-

frame redundancy. Moreover, in frame-by-frame pro-

cessing, the pixels corresponding to cracked regions de-

tected in one frame may not map to the pixels corre-

sponding to the same cracked regions detected in some

other frame. This is because, there may be occlusion

or change in illumination across frames as the camera

moves. Hence, the proposed crack detection method,
which relies on properties of patches in the input frame,

may not detect the exact same pixels in the two frames.

This leads to large variations in the two inpainted frames

for the same cracked regions, given that the inpainting

task is highly sensitive to the pixels to be inpainted.

Therefore, the auto-inpainted videos created by detect-

ing and inpainting cracked regions independently in ev-

ery frame, appear unstable and the effect of seam be-

comes visible.

Alternatively, one may think of using motion as a

cue to track and inpaint the cracked regions across sub-

sequent frames. Motion estimation and compensation

have been popularly used in video compression tech-

niques [18], [41]. Here intermediate frames are gener-

ated using independent frames and motion parameters.

However, since these methods are block based, their

2 For active contour segmentation technique,
we have used the implementation available at
http://www.mathworks.in/matlabcentral/fileexchange/23847-
sparse-field-methods-for-active-contours

use to inpaint videos results in blocking artefacts. More-

over, such methods are computationally expensive since

the motion parameters are estimated independently for

each block. A frame-to-frame transformations is, there-

fore, needed to track the damaged regions in subsequent

frames for creating a seamlessly inpainted video.

Brown and Lowe [5] have suggested a method for

automatic image stitching, wherein transformation be-

tween the images to be stitched is calculated by match-

ing keypoints invariant to rotation, scaling and view

point. Here, the transformation is considered to be pro-

jective or a homography [17]. Since the videos captured

at heritage sites usually contain nearly planar rigid ob-

jects/scene with a moving camera, we can consider the

video frames to be images captured from different view-

points. Hence, the transformation between these frames

can be represented by a homography.

In the proposed video inpainting method, we con-

sider pairs of temporally adjacent frames and use the

corresponding homography to track cracked regions from

one frame to another. The cracked regions are detected

in reference frames using the proposed method described

in section 3 and then tracked to subsequent frames.

Similarly, the detected cracks are inpainted in the ref-

erence frames using the technique proposed in [10] and

then mapped to the tracked regions in the subsequent

frames. Note that the inpainting of video frames can-

not be done by simply copying objects visible in other

frames, as done in [32]. This is because, an object to

be inpainted in one frame also needs to be inpainted in

other frames as well, which mandates the use of a hole

filling technique. The proposed approach for detecting

and inpainting the cracked regions in videos is shown

in figure 10. The various stages involved are described

below.

4.1 Homography estimation

As already mentioned, two frames of a video can be con-

sidered as images captured from different viewpoints.

A frame-to-frame transformation between these frames

can be estimated in the form of homography by match-

ing the SIFT descriptors of keypoints in the two frames

[17], [22]. The extraction of keypoints and correspond-

ing SIFT descriptors3 is performed using the method

given in [23]. The SIFT features are robust to changes in

contrast, illumination, rotation, scaling and view point.

Let the keypoint at location (x1, y1) in the first frame

match the keypoint at location (x2, y2) in the second

3 An implementation for extraction and matching of
SIFT keypoints and corresponding descriptor is available at
http://www.cs.ubc.ca/ lowe/keypoints/
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Fig. 10 Proposed approach for detecting and inpainting the cracked regions in video.

frame. For a set of such matching keypoints, the ho-

mography matrix H obeys the following relation [17],

x′2y′2
z′2

 = H

x1y1
1

 =

h11 h12 h13h21 h22 h23
h31 h32 h33

x1y1
1

 , (4)

where (x′2, y
′
2, z
′
2) are the homogeneous coordinates for

the point (x2, y2) in the second frame such that x2 =
x′2
z′2

and y2 =
y′2
z′2

, and H is a 3× 3 non-singular matrix.

Using the set of matched keypoint locations, the

homography matrix H is estimated using equation (4)

by setting z′2 = 1 i.e. setting the homogeneous coordi-

nates (x′2, y
′
2, z
′
2) = (x2, y2, 1). Here, the random sam-

pling consensus (RANSAC) algorithm [15] is used to

iteratively eliminate the keypoint matches that do not

agree with the estimate of homography matrix.4 Figure

11 illustrates the matching of SIFT keypoints between

a pair of video frames.

4.2 Reference frame detection

A reference frame is the one in which cracked regions

are detected independently. While capturing the video

with a moving camera, new cracked regions may ap-

pear. If the cracked regions are detected in the first

frame and tracked across all subsequent frames, the

new cracks that appear as the camera moves will not

be detected. Therefore, an independent crack detection

needs to be performed quasi-periodically depending the

camera movement. Thus, for fast camera movement,

4 For fitting homography to keypoints using RANSAC,
we used the code available at http://www.csse.uwa.edu.au/
∼pk/Research/MatlabFns/Robust/ransacfithomography.m

(a) (b)

(c)

Fig. 11 Matching of SIFT keypoints. (a)–(b) Two frames of a
video; (c) Pairs of matching keypoints shown by green joining
lines.

the detection needs to be performed more frequently,

while for slow camera motion, a less frequent detection

is required. If the camera motion can be somehow mea-

sured, an appropriate threshold can be set to declare

an incoming frame as a reference frame. An intuitive

way to quantify the camera motion is to calculate the

magnitude of translation.

The authors in [14], [25] have shown that, given a

homography matrix, it can be decomposed to estimate

the translation. The decomposition yields four solutions

in general out of which only two are physically possible.

However, each of these solutions has the same magni-

tude of translation. We make use of this information

to detect the reference frame. The solutions for decom-
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position5 of a homography H are obtained using the

method in [25].

Let t be the translation vector of one of the obtained

solutions such that t = [t1, t2, t3]T . Then the magnitude

of translation is given by |t| =
√
t21 + t22 + t23. Also, let

δr be the threshold for translation. Considering the first

video frame as a reference ref, a homography along with

the translation between the reference and every incom-

ing frame fi is calculated. If the corresponding transla-

tion is greater than δr, then the frame fi is declared as

a reference. For the new incoming frames, fi becomes

the reference frame. This method is given in algorithm

3. The translation threshold δr is set experimentally6

and depends on the frame size.

Algorithm 3 Detection of reference frame

% Let the ith video frame be denoted by fi, such that
the video consists of total k frames. If Ri := 1 then fi is a
reference frame.

% Initialization
R1 = 1;Ri := 0 ∀i := 2, . . . , k.
ref := f1. {reference frame.}

% Update Ri

for i := 2 to k do

suc := fi. {subsequent frame.}
Estimate translation t between ref & suc.
if |t| ≥ δr then

Ri := 1.
ref := suc.

end if

end for

% Result
return Ri ∀i := 1, . . . , k.

4.3 Tracking and inpainting cracked regions across

frames

Every incoming frame is tested for being a reference

frame. When a reference frame is encountered, the cracked

regions that appear in this frame are detected using the

proposed method described in section 3. If the incom-

ing frame is not a reference frame, then a homography

with respect to the previous frame is estimated using

the procedure described in section 4.1. The estimated

homography is used to track the cracked regions across

5 For decomposition of estimated homogra-
phy, we have used the implementation avail-
able at http://cs.gmu.edu/∼kosecka/examples-
code/homography2Motion.m
6 The details of selecting threshold δr are given in section

6.

these frames. For a reference frame, pixels in the newly

detected cracked regions are independently inpainted

using the technique proposed in [10], while for a non-

reference frame, the inpainted regions from the previous

frame are copied to the tracked regions. The tracking

of cracked regions is described below.

For a pair of temporally adjacent frame fi−1 and

fi, the crack pixels at locations (xi, yi) in fi can be

tracked using the corresponding locations of crack pix-

els (xi−1, yi−1) in fi−1 as given below in equation (5).

x′iy′i
z′i

 = Hi

xi−1yi−1
1

 , (5)

where (x′i, y
′
i, z
′
i) are the homogeneous coordinates for

the point (xi, yi) in frame fi, such that xi =
x′i
z′
i

and

yi =
y′i
z′
i
, andHi denotes the homography between frames

fi−1 and fi.

Here, it may happen that estimated coordinates xi
and yi are real numbers. These are rounded to the near-

est integers so that we have the tracked pixels at integer

locations. For simplicity, let the integer-rounded loca-

tion coordinates be denoted by (xi, yi). Setting these

damaged locations to 1 with all other locations set to a

value of 0, a crack-mask consisting of 1’s and 0’s is con-

structed for the frame fi. Since homography introduces

geometric distortions, it may happen that some narrow

cracked regions detected in the frame fi−1 may become

disjoint regions in the newly constructed crack-mask,

which leads to some part of the cracked regions being

missed out. In order to avoid this, we use morphological

closing on the crack-mask to connect the nearby dis-

joint regions. The crack-mask now gives the locations

of the tracked cracks in the frame fi that correspond to

the crack regions detected in the frame fi−1. Figure 12

illustrates the tracking of cracked regions.

We now describe how an incoming frame is pro-

cessed. The first video frame f1 being a reference frame

is independently inpainted after identifying the cracked

regions in it. Any subsequent incoming frame fi may or

may not be a reference frame depending on the cam-

era motion. For both cases, we use the above procedure

along with equation (5) to track cracked regions from

fi−1 to fi. Let Pi denote the binary image consisting of

the cracked regions tracked from frame fi−1 to frame

fi.

In case fi is not a reference frame, it can be in-

painted by filling up the location of the tracked crack

pixels (i.e. {(xi, yi)|Pi(xi, yi) = 1}). This is achieved by

simply copying the values of the corresponding pix-

els from the inpainted version of the previous frame

fi−1. Here, the frames are temporally adjacent and the
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(a) (b)

(c)

Fig. 12 Tracking detected regions using the estimated ho-
mography matrix. (a) Detected damaged regions in the frame
fi−1; (b) frame fi; (c) tracked cracks in the frame fi. Green
lines show the mapping of few points on the boundary of
crack regions, while the detected and tracked cracked regions
using SIFT features are shown in red.

change in intensity of corresponding pixels is negligible.

Also note that the selected translation threshold δr is

small enough so that the change in intensity of corre-

sponding pixels across frames within this translation is

also negligible. Thus, the copying of pixel values across

subsequent frames does not introduce any seam.

Since the homography matrix Hi is non-singular, its

inverse H−1i exists. Therefore, the crack pixels at loca-

tions (xi, yi) and the corresponding locations (xi−1, yi−1)

from the previous frame fi−1, must be related as fol-

lows,x′i−1y′i−1
z′i−1

 = H−1i

xiyi
1

 , (6)

where (x′i−1, y
′
i−1, z

′
i−1) are the homogeneous coordi-

nates for the point (xi−1, yi−1), such that xi−1 =
x′i−1

z′
i−1

and yi−1 =
y′i−1

z′
i−1

. Since xi and yi were rounded to inte-

gers, we may obtain the corresponding xi−1 and yi−1
as real numbers. The intensity at this location is ob-

tained by considering the first-order integer location

neighbourhood and using the bilinear interpolation. It

may be noted that inpainting performed in this manner

across is almost insensitive to small changes in the mor-

phologically closed crack-mask due to directly copying

the values from the previously inpainted regions.

If the incoming frame fi is a reference frame, then

crack detection is performed independently. However,

since only the newly appearing cracked pixels need to

be inpainted, we first calculate the binary image Pi con-

Algorithm 4 Video frame inpainting

% Let the ith video frame be denoted by fi, such that
the video consists of total k frames. Ri := 1 denotes fi is
a reference frame. Let Ai denote the inpainted version of
frame fi.

% Initialization
Detect damaged regions in f1 to get B1.
Set threshold δ0 := |B1|.
Perform inpainting on f1 using B1 to get A1.

% Loop
for i := 2 to k do

Extract SIFT descriptors and homography Hi.
Calculate Pi by tracking damaged regions.
if Ri := 1 then

Detect damaged regions in fi to get Bi.
Calculate Qi using Pi and Bi.
if |Qi| :≤ δ0 then

Calculate Si using Pi and Bi.
Fill pixels {(xi, yi)|Si(xi, yi) = 1} using Ai−1 to get
initial inpainted image init.
Perform inpainting on init using Qi to get Ai.

else
Ri := 0, Ri+1 := 1.
Fill tracked pixels {(xi, yi)|Pi(xi, yi) = 1} using
Ai−1 to get Ai.

end if

else

Fill tracked pixels {(xi, yi)|Pi(xi, yi) = 1} using Ai−1

to get Ai.
end if

end for

% Result
return Inpainted frames Ai ∀i := 1, . . . , k.

sisting of the cracked regions tracked from the previ-

ous frame fi−1. Now, let Bi denote the crack detected

binary image corresponding to fi obtained using the

method described in section 3. Then, the binary image

Qi consisting only the newly appearing cracked pixels

is given by,

Qi(xi, yi) =

{
1, Bi(xi, yi)− Pi(xi, yi) > 0,

0, otherwise.
(7)

Now, an initial inpainting of the reference frame fi
is achieved by using the inpainted version of the previ-

ous frame fi−1 and the binary image Pi. The locations

(xi−1, yi−1) in frame fi−1 corresponding to the pixels

at locations {(xi, yi)|Pi(xi, yi) = 1} are obtained using

the relation in equation (6). Similar to inpainting a non-

reference frame as described above, the pixels at loca-

tions (xi, yi) are filled up by copying values from the

corresponding pixels at locations (xi−1, yi−1) to obtain

the initial inpainted image. The newly detected cracked

pixels given by the binary image Qi are the holes to be

filled up in the initially inpainted image. The final in-

painted version of the reference frame is obtained by
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using the method proposed in [10] considering the ini-

tial inpainted image and the binary image Qi as inputs.

An example for performing inpainting when a new ref-

erence frame appears is shown in figure 21 along with

the experimental results in section 6.

It may happen that a detected reference frame is

highly blurred or noisy due to an unstable camera mo-

tion. In such a case, the crack detection method de-

scribed in section 3 may fail and detect many regions

as cracked. This can be avoided by simply threshold-

ing the number of pixels in the newly detected cracked

regions. Assuming that the number of pixels in the

cracked regions do not vary substantially across the ref-

erence frames or whenever a new reference frame is en-

countered, we set a threshold δ0 based on the number of

cracked pixels detected in the first frame. This is a valid

assumption because, while the camera moves and new

cracked regions enter a frame, some pixels of the pre-

viously detected cracked regions may exit. Also, even

if the cracked pixels do not exit, we expect only few

new cracked pixels to enter. Let |Qi| denote the num-

ber of newly detected cracked pixels in the frame fi
and |B1| denote the number of cracked pixels detected

in the first frame. Then, for a reference frame fi, if we

have |Qi| > δ0 (such that δ0 = 0.5 ∗ |B1|), the frame fi
is treated as a non-reference frame and inpainting is

performed accordingly. Also, the frame fi+1 is set as a

reference frame, provided fi is not the last frame. The

complete procedure for inpainting video frame is given

in algorithm 4.

5 Measuring temporal consistency of the

inpainted video

The quality of a processed image/video is usually quan-

tified in terms of some metric by comparing the im-

age/video with an undistorted source. For example, in

video compression, the quality of a video reconstructed

at a receiver is measured by comparing it with the orig-

inal video transmitted by the sender. However, in some

applications the original source or reference is not avail-

able for comparison. Video inpainting is one such ap-

plication in which missing regions in frames need to be

filled up and hence a reference for comparison is not

available. In such a case, the objective quantification of

the video quality is based on no-reference video quality

assessment (NR VQA) metrics viz. blockiness, bluriness

and sudden local changes [13], [36], [37].

Blockiness gives the measure of spurious blocking

artefacts usually present at the boundary of coding

blocks. Higher the value, higher is the strength of block-

ing artefacts. Blurriness gives a measure of blur in the

frame. It is estimated based on the average width of

strong edges in the frame. More the blur, higher is the

average width and higher is the blurriness value. The

blockiness and blurriness are measured individually for

each video frame. For a video sequence, the blockiness

and blurriness values are taken as the average over all

the frames. The calculation of blockiness and blurriness

metrics has been proposed in [13].

The sudden local changes across the video frames

can be measured using the technique given in [37], [36].

Here, the average value of the discrete cosine transform

(DCT) coefficients of every coding block in the differ-

ence frame is calculated. Mean of the highest 10% av-

erage DCT coefficients is considered as the measure of

sudden local change between two frames. For a video

sequence, these values are averaged over all the pairs of

adjacent frames.

The techniques described above estimate the video

quality directly from the processed video, without con-

sidering the unprocessed video. However, in an appli-

cation like video inpainting, some information from the

unprocessed video also can be used to quantify the qual-

ity of the processed video. The temporal consistency

measure between two videos that we introduce here in-

dicates similarity of between two videos in terms of the

optical flow. Intuitively, to obtain a temporally plausi-

ble inpainted video, the optical flow of the input video

should be maintained on inpainting, provided the ob-

jects to be inpainted are stationary. In other words, the

optical flow between every pair of temporally adjacent

frame in input and corresponding pair of frames in the

inpainted video should be similar. The inpainting of

only the stationary object is a valid assumption for in-

painting videos of heritage monuments. With this cue,

the optical flow between every pair of adjacent frames in

both input as well as inpainted video can be estimated

and used to quantify the quality of the inpainted video.

An example of temporal consistency in terms of optical

flow is shown in figure 13. The optical flow can be esti-

mated by using the classic method proposed by Lucas

and Kanade [24].

Let L0(i) and D0(i) be the magnitude and direction,

respectively, of the optical flow between the ith and

i+ 1th frames in the input video. Similarly, let L1(i)

and D1(i) be the magnitude and direction, respectively,

of the optical flow between the ith and i+ 1th frames

in the inpainted video. Both L and D are vectorized

using lexicographical ordering. Then, the temporal con-

sistency between ith and i+ 1th frames is given by the

Pearson’s correlation coefficient r(i) as follows [21].

r(i) =
1

l − 1

l∑
j=1

(Kj
0(i)− K̄0)(Kj

1(i)− K̄1)

σ0(i)σ1(i)
, (8)
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(a) (b) (c)

Fig. 13 Optical flow between a pair of temporally adjacent frames in (a) input video, (b) auto-inpainted video using proposed
method, (c) video generated by auto-inpainting every frame independently. The optical flow in (a) and (b) appear to be similar
while some haphazard orientations in the optical flow are observed in (c).

where K can be the vector of magnitude (L) or direc-

tion (D), K̄ and σ are mean and standard deviation of

K respectively, and l represents the length of K. The

value r(i) = +1 indicates perfect positive correlation,

r(i) = −1 indicates perfect negative correlation while

r(i) = 0 for un-correlated data. The average value of r

for all the pairs of adjacent frames then gives the tem-

poral consistency between the input and the inpainted

videos. A higher average value of r indicates higher tem-

poral consistency.

6 Experimental Results

In this section, we present the results of our proposed

technique for automatic detection and inpainting of crack-

like damaged regions, on images and videos captured

by us, as well as on images downloaded from various

sources on the Internet. These images and videos con-

tain cracked regions in the form of breaks splitting the

objects/scene. The inpainted results show the effective-

ness of our proposed methods.

For all our experiments to detect cracked region,

we have considered patches Φp of size 3× 3. Patches

of larger sizes did not significantly improve the detec-

tion. In calculation of the tolerant edit distance, we have

set the tolerance value δt = 10 based on the following

experimentation. We considered many patches at the

boundary of known cracked regions from a number of

images, along with their corresponding non-overlapping

adjacent patches. For each of these patches, we calcu-

lated the tolerant edit distances by varying values of

δt. Curves of tolerant edit distance versus normalized

number of patches, corresponding to every δt were plot-

ted, as shown in figure 14. Since the patches belonged

to crack boundaries, we have higher edit distance (i.e.

δt = 0). Increasing the value of δt reduces the sensitivity

and, therefore, only large variations can be detected. It

is observed that for δt = 10, sufficiently large variations
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Fig. 14 Curves for varying tolerance values δt.

were detected and further increasing δt did not change

the curve significantly.

The size of structuring element for morphological

closing used for filling in large gaps depends on the

image size. For an image of size M ×N , the size of

structuring element is taken to be (max (M,N)/360+

min (M,N)/270). In the proposed method for auto-

inpainting in videos, the frames are of size 270× 360.

However, the method also works on videos with larger

frames at an expense of increased computations.

Detection of the reference frames is based on the

translation threshold δr. For frames of size 270× 360,

we conducted the following experiment. We manually

selected two frames viz. 1) the frame in which a cracked

region has completely appeared and 2) the frame in

which the next cracked region begins. For every such

pair of frames, translation was calculated. Conducting

the experiment on a number of videos revealed that the

average value of δr = 25 can be used to detect new in-

coming cracked regions. However, the problem with this

threshold is that, while a part of the newly appearing

cracked region gets detected successfully, the remaining

part which appears in subsequent frames is never de-

tected. For successful detection of the complete cracked

regions, a lower value of threshold is required. By de-

creasing the threshold from 25 to 0, we found δr = 5 to

be an appropriate threshold for successful detection of
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the complete cracked regions. Also note that the inten-

sity change in corresponding pixels across the frames

within this small translation is negligible. This enables

a seamless copying of pixel values when propagating

the already inpainted cracked regions across subsequent

frames. We have, therefore, set δr = 5.

We present the results of our experiments on her-

itage site images in figures 15–20. The input images

shown in figures 15(a)–19(a) are of size 684× 912, while

the image in figure 20(a) is of size 400× 300. We also

show a comparison of the results obtained by our crack

detection method with those obtained using the tech-

niques proposed by Amano [1], Turakhia et al. [43] and

Padalkar et al. [30]. It may be noted that the results

for the technique in [1] are the best possible, obtained

after fine-tuning the parameters.

The images considered for our experiments contain

cracked objects/scenes for which no ground truth is

available that would show how these objects/scenes ex-

isted in their entirety. We, therefore, rely on the ob-

servations made by volunteers and consider the regions

selected by them as cracked regions that need to be in-

painted. In order to determine the suitability of the re-

sulting detection for the use by inpainting algorithms,

the popularly known recall and precision metrics are

considered. These are defined as follows [48].

Recall =
|Ref

⋂
Dect |

|Ref |
,

Precision =
|Ref

⋂
Dect |

|Dect |
.

(9)

Here, Ref are the pixels declared to be in the cracked

regions by volunteers and Dect are the pixels detected

by the algorithm to be in the cracked regions. However,

for providing an insight into the robustness of our pro-

posed algorithm, we use a slightly different precision

measure defined as, Precision = |Refconn |
|Dect| . Here, Refconn

are those pixels detected in Dect that are connected to

cracked regions in Ref . Higher value of Precision in-

dicates that a large number of detected pixels indeed

belong to the cracked regions, while a higher value of

Recall indicates that a large number of cracked pixels

have been detected. For a mask to be suitable for use to

an inpainting algorithm, it is, therefore, desired to have

the Recall value nearer to 1. On the other hand, a low

value for Precision indicates that pixels more than the

desired ones have been detected, which increases the

area to be inpainted. If a large number of pixels other

than the desired target pixels get detected, then many

regions in the image get inpainted unnecessarily, which

may lead to undesired results. Nevertheless, if a mask

with low Recall value is used for inpainting, informa-

tion from the undetected target regions may propagate

inside the detected regions, leading to poor inpainting

results.

The performance of the proposed method in com-

parison with the techniques suggested by Amano [1],

Turakhia et al. [43] and Padalkar et al. [30] in terms of

Recall , Precision and execution time, for input images

in figures 15 – 20 is given in table 1. The results in

figures 15 – 20 show that the cracked detection results

obtained using our proposed technique are similar to

the detection performed manually by volunteers. This

is also evident from the performance table 1 where we

observe that both Recall and Precision values for the

detected cracked regions in most of these images are

nearer to 1, indicating that the desired crack pixels have

been detected with high accuracy.

On the other hand, the technique proposed in [1]

results in detection of either (a) pixels that do not

correspond to the desired cracked regions or (b) too

many pixels around the desired cracked regions. The

later leads to unnecessary inpainting of many regions,

modifying the large undamaged regions in the image,

which is not desirable. Moreover, it slows down the in-

painting as the inpainting process is computationally

expensive. The cracked regions are clearly visible in

the inpainted results shown in figures 15(g), 17(g) and

18(g), while the results shown in figures 16(g), 19(g)

and 20(g) display poor inpainting. Although the tech-

nique in [1] is good for detecting any alteration to the

photograph (like overlay text), our proposed method is

fast and more suitable when it comes to detection of

cracked in the photographed scene/object. The results

of our crack detection method are at par with and in

some cases better than those obtained using the tech-

niques in [30] and [43]. Yet, our method is significantly

faster, more accurate and the inpainted results are con-

vincing.

In videos, an example of inpainting whenever a new

reference frame is encountered is shown in figure 21.

We present the results of the proposed automatic crack

inpainting method on videos captured by us from the

heritage site at Hampi, Karnataka, India. These results

are shown in figures 22–25. Although the videos were

captured at only one heritage site, the proposed method

is generic and should work for other heritage site videos.

As an example, we show one more result on a video of

the McConkie Ranch Petroglyphs near Vernal, Utah,

USA, in figure 26 that demonstrates the effectiveness

of the proposed method. This video was uploaded by

an enthusiast on the popular streaming site YouTube

[38].

From the reported results, we can observe that by

using the proposed method the detected cracked re-

gions are effectively tracked and plausibly inpainted to
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(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 15 Detection and inpainting of cracked regions in images. The detected regions in (b)–(e) and the manual selection by
volunteers in (f) are shown in red color. Results of inpainting the regions detected in (b)–(e) are shown in (g)–(j), respectively.

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 16 Detection and inpainting of cracked regions in images. The detected regions in (b)–(e) and the manual selection by
volunteers in (f) are shown in red color. Results of inpainting the regions detected in (b)–(e) are shown in (g)–(j), respectively.

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 17 Detection and inpainting of cracked regions in images. The detected regions in (b)–(e) and the manual selection by
volunteers in (f) are shown in red color. Results of inpainting the regions detected in (b)–(e) are shown in (g)–(j), respectively.
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(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 18 Detection and inpainting of cracked regions in images. The detected regions in (b)–(e) and the manual selection by
volunteers in (f) are shown in red color. Results of inpainting the regions detected in (b)–(e) are shown in (g)–(j), respectively.

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 19 Detection and inpainting of cracked regions in images. The detected regions in (b)–(e) and the manual selection by
volunteers in (f) are shown in red color. Results of inpainting the regions detected in (b)–(e) are shown in (g)–(j), respectively.

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 20 Detection and inpainting of cracked regions in images. The detected regions in (b)–(e) and the manual selection by
volunteers in (f) are shown in red color. Results of inpainting the regions detected in (b)–(e) are shown in (g)–(j), respectively.
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Table 1 Performance comparison in terms of Recall, Precision and execution time.

Input

#

Crack

pixels

Amano [1] Turakhia et al. [43] Padalkar et al. [30] Proposed technique

Recall
Preci-

sion

Time

(sec)
Recall

Preci-

sion

Time

(sec)
Recall

Preci-

sion

Time

(sec)
Recall

Preci-

sion

Time

(sec)

Fig. 15(a) 3494 0.000 0.000 109.0 0.988 0.887 21.65 0.953 0.743 04.51 0.990 1.000 03.62
Fig. 16(a) 3819 0.918 0.370 13.02 0.970 0.390 22.22 1.000 0.422 14.54 0.969 1.000 03.32
Fig. 17(a) 5162 0.046 0.068 302.3 0.749 0.678 23.29 0.863 0.392 12.77 0.840 0.997 05.02
Fig. 18(a) 2997 0.783 0.737 12.06 0.999 0.728 25.16 0.921 0.678 04.80 0.990 0.997 03.49
Fig. 19(a) 5435 1.000 0.579 19.01 0.974 0.974 29.92 0.987 0.857 04.89 0.985 0.996 04.77
Fig. 20(a) 2276 0.966 0.949 1500 0.932 0.949 13.64 0.808 0.898 05.23 0.952 0.989 07.44

Table 2 Comparison of proposed method with frame-by-frame auto-inpainting, in terms of blockiness (A), bluriness (B),
sudden local change (C) and temporal consistency in optical flow’s direction (D) and magnitude (E).

Proposed method Frame-by-frame auto-inpainting
Video A B C D E A B C D E

Video1 (Fig. 22) 0.1125 5.1020 1.0737 0.9529 0.7501 0.1296 5.1073 1.3126 0.5064 0.2496
Video2 (Fig. 23) 0.1034 4.1261 1.5459 0.6671 0.9604 0.1270 4.2057 1.9463 0.1978 0.4148
Video3 (Fig. 24) 0.2975 4.3382 1.2908 0.9979 0.5424 0.2292 4.3666 1.5322 0.1862 0.6134
Video4 (Fig. 25) 0.1453 4.6306 1.8454 0.8173 0.9678 0.1473 4.7223 2.0858 0.2009 0.8946
Video5 (Fig. 26) 0.1582 3.1264 2.0559 0.5821 0.9654 0.1662 3.1586 2.7768 0.2301 0.9381

get a seamless video. Although there exist approaches

for semi-automatic inpainting of unwanted elements in

videos [46] and video inpainting under constrained cam-

era motion [32], it may be noted that, to the best of

our knowledge, there does not exist any approach that

demonstrates automatic video inpainting under uncon-

strained camera motion with no moving objects. Our

approach handles these cases and we, therefore, do not

show any comparison with the approaches in [46],[32].

However, we do compare the proposed approach with

auto-inpainting done in a frame-by-frame fashion. The

results of the proposed method, along with auto-inpainting

performed individually on every frame are shown in fig-

ures 22–25.

An objective comparison of the proposed method

with frame-by-frame auto-inpainting is presented in ta-

ble 2. A video with higher blockiness and blur has higher

value of the blockiness and blurriness metrics [13], re-

spectively. For a temporally plausible video, the sudden

local change [37], [36] is less while the temporal con-

sistency measure has a higher value. From table 2 we

observe that the proposed method performs better in

terms of blockiness, sudden local change and temporal

consistency, which is in accordance with the results in

figures 22–25.

The implementation details along with the timing

information are presented as follows: for images, the cal-

culation of tolerant Edit Distance which involves com-

parison of many patches is implemented in C (Mat-

lab MEX) while the rest of the method is implemented

in Matlab. For a 684× 912 sized image, the initial de-

tection takes about 1.5 seconds on a Windows 7 Pro-

fessional operating system with 32 bit Intel Core i5,

2.5GHz CPU and 3 GB RAM. The remaining detection

time is spent on refinement, which again is a C (Mat-

lab MEX) implementation. However, in the same setup,

the process for inpainting (for example the regions de-

tected in figure 15(e)) requires about 37 seconds, which

is also a C (Matlab MEX) implementation. Therefore,

at present the implementation does not execute in real-

time and needs to be performed offline. In future, if a

faster inpainting method is developed, the implementa-

tion could run in nearly real-time.

In the case of videos also the implementation is done

in Matlab. Here, the cracked region detection in refer-

ence frames and independent inpainting of newly de-

tected cracked pixels are achieved with the C (Mat-

lab MEX) implementation used above for images. For

frames of size 270× 360 (for example the video cor-

responding to figure 22), the inpainting of reference

frames takes nearly 1.5–2 seconds. This includes the

time required for tracking and inpainting from previ-

ously detected cracked regions (about 0.6 seconds) fol-

lowed by initial detection, refinement and inpainting of

the newly detected cracked pixels. The first frame, how-

ever, required about 4.5 seconds for initial detection, re-

finement and inpainting. Note that the size of the frame

here is 270× 360. Subsequent (non-reference) frames

take about 0.08 seconds to complete tracking and in-

painting from previously detected cracked regions, which

is very fast when compared to independent inpainting

of each frame. In this case, a considerable amount of
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time is required for the inpainting operation in refer-

ence frames. In real-time, this introduces a lag in the

video.

Although major computational steps are implemented

in C (Matlab MEX), our implementation is not an op-

timized version but a proof of concept of the proposed

method. Having said that, we are optimistic about an

implementation for mobile phones in order to use the

method directly at heritage sites. This is because of the

quick inpainting of subsequent (non-reference) frames.

A real-time on-the-fly inpainting of the video frames

could be possible with an implementation optimized for

the hardware of mobile phones.

7 Conclusion

In this paper we have presented a technique that can au-

tomatically detect cracked regions and use these regions

for inpainting. By comparing non-overlapping patches

using the tolerant edit distance measure introduced here,

our method initially localizes the cracked regions. Fur-

ther, using an active contour-based segmentation, the

results are refined to accurately detect the cracked re-

gions. Based upon this crack detection method, we build

up a method that can be used to automatically de-

tect and inpaint cracked regions in videos captured at

heritage sites. The new cracked pixels detected in the

reference frames are inpainted independently. The ho-

mography estimated between two temporally adjacent

frames is used to track and the cracked regions in sub-

sequent frames. The reported results suggest that the

method can be used to auto-inpaint the cracked regions

captured in heritage site videos. In future, we aim to

extend this detection method to perform simultaneous

on-the-fly detection and inpainting, which can be used

to build an immersive walk-through system.
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(l) (m) (n) (o)

Fig. 21 Inpainting a newly appearing reference frame fi. (a),(b),(c) show frames fi−2, fi−1 and fi, respectively, while the
cracked regions selected by volunteers corresponding to these frames are shown in (d),(e),(f); the cracked regions corresponding
to (a),(b),(c) tracked from detected cracks in previous frames are shown in (g),(h),(i); independent crack detection in fi is
shown in (j), while the newly appearing cracked pixels in (j) with respect to (i) are displayed in (k); the inpainted versions of
fi−2, fi−1, fi obtained by copying pixels from respective previous inpainted frames are shown in (l),(m),(n); final inpainted
version of fi obtained after inpainting the newly detected pixels given in (k) is shown in (o). Note that the crack visible near
the right side in (n) is filled in (o) by independently inpainting the pixels shown in (k).

(a)

(b)

(c)

(d)

(e)

Fig. 22 Result of auto-inpainting cracked regions in video frames. (a) Input frame sequence, left most frame is the reference
frame; (b) cracked regions auto-detected in the reference frame tracked using SIFT and homography; (c) inpainted frames cor-
responding to frames in (b); (d) cracked regions auto-detected independently in each frame; (e) inpainted frames corresponding
to frames in (d).
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(a)

(b)

(c)

(d)

(e)

Fig. 23 Result of auto-inpainting cracked regions in video frames. (a) Input frame sequence, left most frame is the reference
frame; (b) cracked regions auto-detected in the reference frame tracked using SIFT and homography; (c) inpainted frames cor-
responding to frames in (b); (d) cracked regions auto-detected independently in each frame; (e) inpainted frames corresponding
to frames in (d).

(a)

(b)

(c)

(d)

(e)

Fig. 24 Result of auto-inpainting cracked regions in video frames. (a) Input frame sequence, left most frame is the reference
frame; (b) cracked regions auto-detected in the reference frame tracked using SIFT and homography; (c) inpainted frames cor-
responding to frames in (b); (d) cracked regions auto-detected independently in each frame; (e) inpainted frames corresponding
to frames in (d).
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(d)

(e)

Fig. 25 Result of auto-inpainting cracked regions in video frames. (a) Input frame sequence, left most frame is the reference
frame; (b) cracked regions auto-detected in the reference frame tracked using SIFT and homography; (c) inpainted frames cor-
responding to frames in (b); (d) cracked regions auto-detected independently in each frame; (e) inpainted frames corresponding
to frames in (d).

(a)

(b)

(c)

(d)

(e)

Fig. 26 Result of auto-inpainting cracked regions in video frames. (a) Input frame sequence, left most frame is the reference
frame; (b) cracked regions auto-detected in the reference frame tracked using SIFT and homography; (c) inpainted frames cor-
responding to frames in (b); (d) cracked regions auto-detected independently in each frame; (e) inpainted frames corresponding
to frames in (d).
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