Simultaneous Inpainting and Super-resolution Using Self-learning

Milind G. Padalkar, Manjunath V. Joshi, Nilay Khatri

milind_padalkar@daiict.ac.in, mv_joshi@daiict.ac.in, nilay_space@yahoo.co.in

Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India

Introduction

In applications like creating immersive walkthrough systems or digital reconstruction of invaluable artwork, both inpainting and superresolution of the given images are the preliminary steps in order to provide better visual experience. The usual practice is to solve these problems independently in a pipelined manner. In this paper we propose a unified framework to perform simultaneous inpainting and superresolution (SR). The main focus of this paper is inpainting, i.e. to remove objects in photographs and replace them with visually plausible backgrounds. The super-resolved version is obtained as a by-product in the process of using an additional constraint that helps in finding a better source for inpainting.

Proposed method

Constructing LR-HR pair dictionaries:

- Find matches for LR in the coarser resolution and obtain the corresponding HR.
- Many LR patches may be mapped to one HR patch.
- Create dictionaries D_{HR} and D_{LR} using the highly mapped HR patches and corresponding LR patches, respectively.

Figure 1: Finding LR-HR patch pairs using the given image I_0 and its coarser resolution I_{-1} .

Key Idea

- We search for the inpainting exemplars by comparing patch details at finer resolution.
- The finer resolution details are selflearnt using the constructed dictionaries of image-representative low and high resolution patch pairs from the known regions in the test image and its coarser resolution.

Advantages

• Additional constraint in the form of finer resolution matching results in better inSelecting highest priority patch and finding candidate exemplars:

- A patch $y_p = y_p^k \cup y_p^u$ on the boundary of the inpainting region Ω_0 is selected for inpainting based on presence of structure and proportion of known pixels y_p^k [1].
- Candidate exemplars y_{q_1}, \ldots, y_{q_K} are found by comparing y_p with every $m \times m$ sized patch in $I_0 - \Omega_o$.

Estimating HR using constructed dictionaries:

The HR patch Y corresponding to an LR patch y is self-learnt [2] using the LR-HR patch pair dictionaries as $|Y = D_{HR} * \alpha|$, where, α is the sparse representation obtained by optimizing

 $\min ||\alpha||_{l_1}$, subject to $y = D_{LR} * \alpha$

This is used to estimate Y_{q_1}, \ldots, Y_{q_K} from y_{q_1}, \ldots, y_{q_K} , respectively. Similarly Y_p corresponding to y_p is estimated by considering the known pixels y_p^k and corresponding rows in the LR dictionary D_{LR} .

Inpainting:

- Compare HR patches Y_{q_1}, \ldots, Y_{q_K} with Y_p and choose the one having minimum sum of squared distance as Y_q .
- Inpainted HR patch: $H_p = Y_p$ followed by $H_p^u = Y_q^u$.
- Inpainted LR patch: Obtain L_p from H_p using the same transformation that was used to obtain I_{-1} from I_0 .
- Update Ω_0 .

painting.

• The obtained finer resolution patches represent the super-resolved patches in the missing regions. As a result, inpainting is obtained not only in the given spatial resolution but also at higher resolution leading to super-resolution inpainting.

Conclusion

An additional constraint of matching patches at both original and higher resolution not only provides better source patches for inpainting but also results in super-resolution inpainting.

Acknowledgements

• This work is a part of the project Indian Digital Heritage (IDH) - Hampi sponsored by Department of Science and Technology (DST), Govt. of India. (Grant No: NRDMS/11/1586/2009/Phase-II)

• Repeat till all patches in Ω_0 are inpainted.

Results

(a)

(e)

Result 2:

(d)

• Travel support by Xerox Research Centre India (XRCI).

References

- A. Criminisi, P. Pérez, and K. Toyama. Region filling and object removal by exemplar-based inpainting. Trans. Image Proc., 13(9):1200–1212, Jan. 2004.
- N. Khatri and M. V. Joshi. Image super-resolution: Use of self-learning and Gabor prior. In ACCV 2012, pages 413–424.
- J. Huang, S. Kang, N. Ahuja, and J. Kopf. Image 3 completion using planar structure guidance. ACM Trans. Graph., 33(4):129:1–129:10, July 2014.
- D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV 2009, pages 349–356.

(g)

(f)

(e)

Figure 2: Simultaneous inpainting and super-resolution: (a) input; (b) region to be inpainted; (c) inpainting using planar structure guidance [3]; (d) inpainting using proposed method showing a box inside the inpainted region; (e) simultaneously inpainted and super-resolved image (by a factor of 2) using the proposed method with known regions upsampled using bicubic interpolation; (f)-(h) expanded versions after upsampling (the region marked by the box in (d)) using various approaches viz. (f) bicubic interpolation, (g) Glasner *et al.*'s method [4] and (h) proposed method for super-resolution.

(h)